Прогностическая значимость эквивалентной плотности кальциевых депозитов коронарных артерий у мужчин с остеопеническим синдромом, перенесших коронарное шунтирование: проспективное исследование
Прогностическая значимость эквивалентной плотности кальциевых депозитов коронарных артерий у мужчин с остеопеническим синдромом, перенесших коронарное шунтирование: проспективное исследование
Коков А.Н., Масенко В.Л., Барбараш О.Л. Прогностическая значимость эквивалентной плотности кальциевых депозитов коронарных артерий у мужчин с остеопеническим синдромом, перенесших коронарное шунтирование: проспективное исследование. Терапевтический архив. 2022;94(4):467–472.
DOI: 10.26442/00403660.2022.04.201463
________________________________________________
Kokov AN, Masenko VL, Barbarash OL. Prognostic significance of equivalent density of calcium deposits of coronary arteries in men with osteopenic syndrome and prior coronary artery bypass grafting: prospective study. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(4):467–472. DOI: 10.26442/00403660.2022.04.201463
Прогностическая значимость эквивалентной плотности кальциевых депозитов коронарных артерий у мужчин с остеопеническим синдромом, перенесших коронарное шунтирование: проспективное исследование
Коков А.Н., Масенко В.Л., Барбараш О.Л. Прогностическая значимость эквивалентной плотности кальциевых депозитов коронарных артерий у мужчин с остеопеническим синдромом, перенесших коронарное шунтирование: проспективное исследование. Терапевтический архив. 2022;94(4):467–472.
DOI: 10.26442/00403660.2022.04.201463
________________________________________________
Kokov AN, Masenko VL, Barbarash OL. Prognostic significance of equivalent density of calcium deposits of coronary arteries in men with osteopenic syndrome and prior coronary artery bypass grafting: prospective study. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(4):467–472. DOI: 10.26442/00403660.2022.04.201463
Цель. Определение клинико-прогностической значимости эквивалентной плотности кальциевых депозитов (ЭПКД) коронарных артерий (КА) у пациентов с ишемической болезнью сердца (ИБС) и сопутствующим остеопеническим синдромом (ОС), перенесших шунтирование КА, на основании пятилетнего наблюдения. Материалы и методы. В проспективное исследование были включены 393 пациента со стабильной ИБС, госпитализированные для проведения коронарного шунтирования. Всем пациентам выполнены компьютерная томография КА для оценки степени кальциноза и ЭПКД, а также рентгеновская остеоденситометрия. Через 5 лет наблюдения оценивали летальность, которая составила 10,7%, и наступление неблагоприятных сердечно-сосудистых событий. Средняя длительность периода наблюдения составила 58,9±1,8 мес. Результаты. Установлена корреляция ЭПКД с наличием ОС (r=0,19; p<0,001), снижением Т-критерия бедра (r=-0,21; p<0,001) и поясничных позвонков (r=-0,19; p<0,001). При снижении ЭПКД КА ниже уровня 0,19 мг/мм3 отмечалось увеличение риска смерти в 2,84 раза. Линейный регрессионный анализ позволил установить следующие предикторы неблагоприятных исходов: наличие стенозов сонных артерий ≥30%, низкая сократительная способность левого желудочка, повышенный уровень триглицеридов и низкая ЭПКД КА. Заключение. Получены данные об отрицательной прогностической значимости низкой ЭПКД КА в отношении летальности, повторных инфарктов миокарда и реваскуляризаций у больных, перенесших коронарное шунтирование, независимо от наличия сопутствующего ОС.
Aim. Determination of the clinical and prognostic value of the equivalent density of calcium deposits (EDCD) of coronary arteries in patients with stable coronary heart disease (CHD) and concomitant osteopenic syndrome (OS) after coronary artery bypass grafting (CABG), based on five-year follow-up. Materials and methods. A prospective study included 393 patients with stable CHD hospitalized for CABG. All patients underwent multispiral computed tomography of coronary arteries to assess the degree of calcification and EDCD, and Х-ray absorptiometry. During the five-year observation we studied mortality and adverse cardiovascular events. The average duration of the observation period was 58.9±1.8 months. Results. Data were obtained on the correlation of EDCD with the presence of OS (r=0.19; p<0.001), a decrease in the T-criterion of the thigh (r=-0.21; p<0.001) and lumbar vertebrae (r=-0.19; p<0.001). With a decrease in the EDCD of coronary arteries below the level of 0.19 mg/mm3, an increased mortality risk is noted (odds ratio 2.84, 95% confidence interval 1.54–5.25). Linear regression analysis revealed that predictors of adverse outcomes over the course of a follow-up were the presence of carotid artery stenosis ≥30%, low left ventricular contractility, elevated triglyceride levels, and low EDCD. Conclusion. According to the results of the study the negative prognostic significance of the low EDCD of coronary arteries in relation to mortality, myocardial infarction, and revascularization in patients after CABG, regardless of the presence of concomitant OS.
1. Наумов А.В. Кальций и витамин D3: от остеопороза до полиморбидности сердечно-сосудистых заболеваний. Лечащий врач. 2012;4:36 [Naumov AV. Calcium and Vitamin D3: from osteoporosis to poly morbidity of cardiovascular diseases. Lechashii vrach. 2012;4:36 (in Russian)].
2. Кашталап В.В., Хрячкова О.Н., Барбараш О.Л. «Новый» патологический континуум: гипогонадизм, остеопороз и кальцинирующий атеросклероз. Общие факторы формирования и прогрессирования. Атеросклероз. 2016;12(4):68-78
[Kashtalap VV, Khryachkova ON, Barbarash OL. “New” pathological continuum: hypogonadism, osteoporosis and calcifying atherosclerosis. General factors of formation and progression. Ateroscleroz. 2016;12(4):68-78 (in Russian)].
3. Otsuka F, Sakakura K, Yahagi K, et al. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724-36. DOI:10.1161/ATVBAHA.113.302642
4. Pini R, Faggioli G, Fittipaldi S, et al. Relationship between calcification and vulnerability of the carotid plaques. Ann Vasc Surg. 2017;44:336-42.
DOI:10.1016/j.avsg.2017.04.017
5. Масенко В.Л., Коков А.Н., Семенов С.Е., Барбараш О.Л. Неинвазивная оценка плотности кальциноза коронарных и каротидных артерий у больных сахарным диабетом II типа. Вестник рентгенологии и радиологии. 2019;99(6):310-18 [Masenko VL, Kokov AN, Semenov SE, Barbarash OL. Noninvasive evaluation of density of coronary and carotid calcification in patients with type 2 diabetes mellitus. Journal of Radiology and Nuclear Medicine. 2019;99(6):310-18 (in Russian)]. DOI:10.20862/0042-4676-2018-99-6-310-318
6. Cahalane RM, Barrett HE, O'Brien JM, et al. Relating the mechanical properties of atherosclerotic calcification to radiographic density: A nanoindentation approach. Acta Biomater. 2018;80:228-36. DOI:10.1016/j.actbio.2018.09.010
7. Масенко В.Л., Семенов С.Е., Коков А.Н. Атерокальциноз и остеопороз. Связи и условия взаимного влияния. Обзор. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;6(2):93-102 [Masenko VL, Semenov SE, Kokov AN. Vascular calcification and osteoporosis. The links and conditions interference. Review. Complex Issues of Cardiovascular Diseases. 2017;6(2):93-102 (in Russian)]. DOI:10.17802/2306-1278-2017-2-93-102
8. Shen C, Deng J, Zhou R, et al. Relation between bone mineral density, bone loss and the risk of cardiovascular disease in a Chinese cohort. Am J Cardiol. 2012;110(8):1138-42. DOI:10.1016/j.amjcard.2012.05.053
9. Deneke T, Grewe PH, Ruppert S, et al. Atherosclerotic carotid arteries – calcification and radio-morphological findings. Z Kardiol. 2000;89(2):36-48.
DOI:10.1007/s003920070098
10. Kitagawa T, Yamamoto H, Horiguchi J, et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging. 2009;2(2):153-60. DOI:10.1016/j.jcmg.2008.09.015
11. Achenbach S, Raggi P. Imaging of coronary atherosclerosis by computed tomography. Eur Heart J. 2010;31(12):1442-8. DOI:10.1093/eurheartj/ehq150
12. Miralles M, Merino J, Busto M, et al. Quantification and characterization of carotid calcium with multi-detector CT-angiography. Eur J Vasc Endovasc Surg. 2006;32(5):561-7. DOI:10.1016/j.ejvs.2006.02.019
13. Hoffmann U, Kwait DC, Handwerker J, et al. Vascular Calcification in ex vivo Carotid Specimens: Precision and Accuracy of Measurements with Multi-Detector Row CT. Radiology. 2003;229(2):375-81. DOI:10.1148/radiol.2292021016
14. Nicoll R, Henein MY. Arterial calcification: friend or foe? Int J Cardiol. 2013;167(2):322-7. DOI:10.1016/j.ijcard.2012.06.110
15. Rhee EJ, Kim JH, Park HJ, et al. Increased risk for development of coronary artery calcification in insulin-resistant subjects who developed diabetes: 4-year longitudinal study. Atherosclerosis. 2016;245:132-8. DOI:10.1016/j.atherosclerosis.2015.12.010
16. Gorter PM, de Vos AM, van der Graaf Y, et al. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol. 2008;102(4):380-5. DOI:10.1016/j.amjcard.2008.04.002
17. Lee JJ, Pedley A, Hoffmann U, et al. Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: the Framingham Heart Study. Am J Med. 2018;131(6):684-92. DOI:10.1016/j.amjmed.2018.02.002
18. Collins TC, Ewing SK, Diem SJ, et al. Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation. 2009;119(17):2305-12. DOI:10.1161/CIRCULATIONAHA.108.820993
19. Naves M, Rodriguez-Garcia M, Diaz-Lopez JB, et al. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int. 2008;19(8):1161-6. DOI:10.1007/s00198-007-0539-1
20. Beer S, Saely CH, Hoefle G, et al. Low bone mineral density is not associated with angiographically determined coronary atherosclerosis in men. Osteoporos Int. 2010;21(10):1695-701. DOI:10.1007/s00198-009-1103-y
21. Szulc P, Samelson EJ, Kiel DP, Delmas PD. Increased bone resorption is associated with increased risk of cardiovascular events in men: the MINOS study. J Bone Miner Res. 2009;24(12):2023-31. DOI:10.1359/jbmr.090531
22. Lin ME, Chen TM, Wallingford MC, et al. Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation. Cardiovasc Res. 2016;112(2):606-16. DOI:10.1093/cvr/cvw205
________________________________________________
1. Naumov AV. Calcium and Vitamin D3: from osteoporosis to poly morbidity of cardiovascular diseases. Lechashii vrach. 2012;4:36 (in Russian).
2. Kashtalap VV, Khryachkova ON, Barbarash OL. “New” pathological continuum: hypogonadism, osteoporosis and calcifying atherosclerosis. General factors of formation and progression. Ateroscleroz. 2016;12(4):68-78 (in Russian).
3. Otsuka F, Sakakura K, Yahagi K, et al. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724-36. DOI:10.1161/ATVBAHA.113.302642
4. Pini R, Faggioli G, Fittipaldi S, et al. Relationship between calcification and vulnerability of the carotid plaques. Ann Vasc Surg. 2017;44:336-42.
DOI:10.1016/j.avsg.2017.04.017
5. Masenko VL, Kokov AN, Semenov SE, Barbarash OL. Noninvasive evaluation of density of coronary and carotid calcification in patients with type 2 diabetes mellitus. Journal of Radiology and Nuclear Medicine. 2019;99(6):310-18 (in Russian). DOI:10.20862/0042-4676-2018-99-6-310-318
6. Cahalane RM, Barrett HE, O'Brien JM, et al. Relating the mechanical properties of atherosclerotic calcification to radiographic density: A nanoindentation approach. Acta Biomater. 2018;80:228-36. DOI:10.1016/j.actbio.2018.09.010
7. Masenko VL, Semenov SE, Kokov AN. Vascular calcification and osteoporosis. The links and conditions interference. Review. Complex Issues of Cardiovascular Diseases. 2017;6(2):93-102 (in Russian). DOI:10.17802/2306-1278-2017-2-93-102
8. Shen C, Deng J, Zhou R, et al. Relation between bone mineral density, bone loss and the risk of cardiovascular disease in a Chinese cohort. Am J Cardiol. 2012;110(8):1138-42. DOI:10.1016/j.amjcard.2012.05.053
9. Deneke T, Grewe PH, Ruppert S, et al. Atherosclerotic carotid arteries – calcification and radio-morphological findings. Z Kardiol. 2000;89(2):36-48.
DOI:10.1007/s003920070098
10. Kitagawa T, Yamamoto H, Horiguchi J, et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging. 2009;2(2):153-60. DOI:10.1016/j.jcmg.2008.09.015
11. Achenbach S, Raggi P. Imaging of coronary atherosclerosis by computed tomography. Eur Heart J. 2010;31(12):1442-8. DOI:10.1093/eurheartj/ehq150
12. Miralles M, Merino J, Busto M, et al. Quantification and characterization of carotid calcium with multi-detector CT-angiography. Eur J Vasc Endovasc Surg. 2006;32(5):561-7. DOI:10.1016/j.ejvs.2006.02.019
13. Hoffmann U, Kwait DC, Handwerker J, et al. Vascular Calcification in ex vivo Carotid Specimens: Precision and Accuracy of Measurements with Multi-Detector Row CT. Radiology. 2003;229(2):375-81. DOI:10.1148/radiol.2292021016
14. Nicoll R, Henein MY. Arterial calcification: friend or foe? Int J Cardiol. 2013;167(2):322-7. DOI:10.1016/j.ijcard.2012.06.110
15. Rhee EJ, Kim JH, Park HJ, et al. Increased risk for development of coronary artery calcification in insulin-resistant subjects who developed diabetes: 4-year longitudinal study. Atherosclerosis. 2016;245:132-8. DOI:10.1016/j.atherosclerosis.2015.12.010
16. Gorter PM, de Vos AM, van der Graaf Y, et al. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol. 2008;102(4):380-5. DOI:10.1016/j.amjcard.2008.04.002
17. Lee JJ, Pedley A, Hoffmann U, et al. Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: the Framingham Heart Study. Am J Med. 2018;131(6):684-92. DOI:10.1016/j.amjmed.2018.02.002
18. Collins TC, Ewing SK, Diem SJ, et al. Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation. 2009;119(17):2305-12. DOI:10.1161/CIRCULATIONAHA.108.820993
19. Naves M, Rodriguez-Garcia M, Diaz-Lopez JB, et al. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int. 2008;19(8):1161-6. DOI:10.1007/s00198-007-0539-1
20. Beer S, Saely CH, Hoefle G, et al. Low bone mineral density is not associated with angiographically determined coronary atherosclerosis in men. Osteoporos Int. 2010;21(10):1695-701. DOI:10.1007/s00198-009-1103-y
21. Szulc P, Samelson EJ, Kiel DP, Delmas PD. Increased bone resorption is associated with increased risk of cardiovascular events in men: the MINOS study. J Bone Miner Res. 2009;24(12):2023-31. DOI:10.1359/jbmr.090531
22. Lin ME, Chen TM, Wallingford MC, et al. Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation. Cardiovasc Res. 2016;112(2):606-16. DOI:10.1093/cvr/cvw205
Авторы
А.Н. Коков*, В.Л. Масенко, О.Л. Барбараш
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Россия
*radiology@bk.ru
________________________________________________
Alexander N. Kokov*, Vladislava L. Masenko, Olga L. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
*radiology@bk.ru