Цель. Изучить профиль биохимических маркеров системы гемостаза для уточнения их роли и взаимоотношений в патогенезе развития тромботических осложнений (ТО) ишемического инсульта (ИИ) и связанной с этим оценки возможностей их диагностического применения. Материалы и методы. В группу исследования включены 302 пациента (164 мужчины, 138 женщин), поступивших в стационар с диагнозом ИИ в течение 24 ч от начала развития заболевания. Диагноз подтвержден методом компьютерной томографии. Средний возраст пациентов составлял 69 (50–88) лет. У всех пациентов в 1-е сутки заболевания взята кровь для определения профиля аналитов, предположительно ассоциированных с патогенезом развития ТО. В сыворотке крови методом иммуноферментного анализа определены уровни гомоцистеина, ингибитора протеина С, тромбомодулина, плазминогена, тканевого активатора плазминогена, урокиназы, ингибитора активатора плазминогена 1-го типа, комплекса t-PA/PAI-1, витронектина, комплекса «плазмин-α2-антиплазмин», D-димера, фибронектина. Результаты. ТО в остром периоде ИИ (до 21 сут болезни) зафиксированы у 32 (10,6%, 95% доверительный интервал – ДИ 7,37–14,3) пациентов, из них тромбоэмболия легочной артерии отмечалась у 27 (8,94%, 95% ДИ 5,98–12,4) пациентов, тромбоз глубоких вен – у 5 (1,66%, 95% ДИ 0,47–3,47) пациентов. Исследование панели специфических белков, участвующих в патогенетических процессах, сопровождающих некроз ткани мозга при ИИ, продемонстрировало, что из всего выбранного для исследования перечня биохимических маркеров системы гемостаза наиболее значимы: концентрация фибронектина в прогнозе отсутствия ТО с пороговым значением более 61 мкг/мл и отношением шансов 4,4 (95% ДИ 1,5–12,9, р=0,011) и концентрация комплекса t-PA/PAI-1 в прогнозе развития ТО с пороговым значением более 14 нг/мл и отношением шансов 11,3 (95% ДИ 1,18–109,3, р=0,03). Заключение. Значимость комплекса t-PA/PAI-1 и фибронектина как маркеров ТО при ИИ может быть обусловлена нарушением процессов активации фибринолитического звена гемостаза и накоплением неопсонированных соединений, повреждающих сосудистую стенку.
Ключевые слова: тромботические осложнения, ишемический инсульт, биомаркер, фибронектин, комплекс активатора и ингибитора плазминогена
________________________________________________
Aim. To study the profile of biochemical markers of the hemostasis system, to clarify their role and relationships in the pathogenesis of the development of thrombotic complications (TC) of ischemic stroke (IS) and the associated assessment of the possibilities of their diagnostic application. Materials and methods. The study group included 302 patients (164 men, 138 women) who were admitted to the hospital with a diagnosis of IS within 24 hours of the onset of the disease. The diagnosis was confirmed by computed tomography. The average age of patients was 69 (50–88) years. Blood was taken from all patients on the 1st day of the disease to determine the profile of analytes presumably associated with the pathogenesis of TC. Levels of homocysteine, protein C inhibitor, thrombomodulin, plasminogen, tissue plasminogen activator, urokinase, plasminogen activator type 1 inhibitor, t-PA/PAI-1 complex, vitronectin, plasmin-α2-antiplasmin complex, D-dimer, fibronectin were determined in blood serum by ELISA. Results. TC in the acute period of IS (up to 21 days) were recorded in 32 (10.6%, 95% CI 7.37–14.3) patients, of which pulmonary embolism was observed in 27 (8.94%, 95% CI 5.98–12.4) patients, deep vein thrombosis in 5 (1.66%, 95% CI 0.47–3.47) patients. The results of the study of a panel of specific proteins involved in pathogenetic processes accompanying necrosis of brain tissue in IS demonstrated that of the entire list of markers of the hemostasis system activation selected for the study, the most significant are: the concentration of fibronectin in the prognosis of the absence of TC with a threshold value of more than 61 mkg/ml and OR 4.4 (95% CI 1.5–12.9, p=0.011), and the concentration of the t-PA/PAI-1 complex in the prognosis of the development of TC with a threshold value of more than 14 ng/ml and OR 11.3 (95% CI 1.18–109.3, p=0.03). Conclusion. The significance of the t-PA/PAI-1 complex and fibronectin as markers of TC in IS may be due to a violation of the activation processes of the fibrinolytic link of hemostasis and the accumulation of non-deposited compounds that damage the vascular wall.
1. Инсульт: Руководство для врачей. Под ред. Л.В. Стаховской, С.В. Котова. М.: МИА, 2014 [Insul't: Rukovodstvo dlia vrachei. Pod red. LV Stakhovskoi, SV Kotova. Moscow: MIA, 2014 (in Russian)].
2. Парфенов В.А. Венозные тромбоэмболические осложнения при ишемическом инсульте и их профилактика. Неврологический журнал. 2012;5:4-9 [Parfenov VA. Venous thromboembolic complications in ischemic stroke and their prevention. Neurological journal. 2012;5:4‑9 (in Russian)].
3. Рябинкина Ю.В., Гнедовская Е.В., Максимова М.Ю., и др. Инсульт: частота развития и факторы риска венозных тромбоэмболических осложнений в условиях отделения реанимации и интенсивной терапии. Анестезиология и реаниматология. 2015;5:54-9 [Ryabinkina YuV, Gnedovskaya EV, Maksimova MYu, at al. Stroke: Incidence and risk factors for venous thromboembolic complications in intensive care unit. Anesteziologiya i reanimatologiya. 2015;60(5):54-59 (in Russian)].
4. Esse R, Barroso M, Tavares de Almeida I, Castro R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int J Mol Sci. 2019; 20(4):867. DOI:10.3390/ijms20040867
5. Huimin F, Hao X, Yang S, et al. Study on the incidence and risk factor of silent cerebrovascular disease in young adults with first-ever stroke. Medicine (Baltimore). 2018;48:e13311. DOI:10.1097/MD.0000000000013311
6. Liu J, Quan J, Li Y, et al. Blood homocysteine levels could predict major adverse cardiac events in patients with acute coronary syndrome A STROBE-compliant observational study. Medicine (Baltimore). 2018;40:e12626. DOI:10.1097/MD.0000000000012626
7. Fan YL, Zhan R, Dong YF, et al. Significant interaction of hypertension and homocysteine on neurological severity in first-ever ischemic stroke patients. J Am Soc Hypertens. 2018;7:534-41. DOI:10.1016/j.jash.2018.03.011
8. Albert CM, Cook NR, Gaziano JM, et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: A randomized trial. JAMA J Am Med Assoc. 2008;299:2027036. DOI:10.1001/jama.299.17.2027
9. Martí-Carvajal AJ, Solà I, Lathyris D, Dayer M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2017;17;8(8):CD006612. DOI:10.1002/14651858.CD006612.pub5
10. Cho Х, Degen JL, Coller BS, et al. Fibrin but not adsorbed fibrinogen supports fibronectin assembly by spread platelets. Effects of the interaction of alphaIIb beta3 with the C terminus of the fibrinogen gamma-chain. Biol Chem. 2005;9:280-5. DOI:10.1074/jbc.M506289200
11. Березовская Г.А., Карпенко М.А., Петрищев Н.Н. Фибронектин – фактор риска или защиты после интракоронарного стентирования? Регионарное кровообращение и микроциркуляция. 2013;12(4):12-9 [Berezovskaya GA, Karpenko MA, Petrishchev NN. Fibronectin – a risk factor or protection after intracoronary stenting? Regional Blood Circulation and Microcirculation. 2013;12(4):12-9 (in Russian)].
12. Singh S, Houng AK, Wang D, Reed GL. Physiologic variations in blood plasminogen levels affect outcomes after acute cerebral thromboembolism in mice: a pathophysiologic role for microvascular thrombosis. J Thromb Haemost. 2016;9:1822-32. DOI:10.1111/jth.13390
13. Bachmann F, Kruithof EKO. Tissue plasminogen activator: Chemical and physiological aspects. Sem Thromb Haemostas. 1984;10:6-17. DOI:10.1055/s-2007-1004403
14. Ткачук В.А., Плеханова О.С., Белоглазова И.Б., Парфенова Е.В. Роль мультидоменной структуры урокиназы в регуляции роста и ремоделирования сосудов. Український біохімічний журнал. 2013;6:18-45 [Tkachuk VA, Plekhanova OS, Beloglazova IB, Parfenova EV. The role of the multidomain structure of urokinase in the regulation of growth and vascular remodeling. Ukrainian Biochemical Journal. 2013;6:18-45 (in Russian)].
15. Jung RG, Motazedian P, Ramirez FD, et al. Association between plasminogen activator inhibitor-1 and cardiovascular events: a systematic review and meta-analysis. Thromb J. 2018;16:12. DOI:10.1186/s12959-018-0166-4
16. Ozolina A, Strike E, Jaunalksne I, et al. PAI-1 and t-PA/PAI-1 complex potential markers of fibrinolytic bleeding after cardiac surgery employing cardiopulmonary bypass. BMC Anesthesiol. 2012;30:12-27. DOI:10.1186/1471-2253-12-27
17. Yildiz SY, Kuru P, Oner E, Agirbasli M. Functional Stability of Plasminogen Activator Inhibitor-1. ScientificWorldJournal. 2014;2014:858293. DOI:10.1155/2014/858293
18. Guruswamy R, El Ali A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci. 2017;3:496. DOI:10.3390/ijms18030496
19. Feinberg WM, Macy E, Cornell ES, et al. Plasmin-alpha2-antiplasmin complex in patients with atrial fibrillation. Stroke Prevention in Atrial Fibrillation Investigators. Thromb Haemost. 1999;1:100-3.
20. Shapir L, Gross B. Dynamic changes of D-dimer following stroke. Harefuah. 2017;5:302-6.
21. Li J, Gu C, Li D, et al. Effects of serum N-terminal pro B-type natriuretic peptide & D-dimer levels on patients with acute ischemic stroke. Pak J Med Sci. 2018;4:994-8. DOI:10.12669/pjms.344.15432
22. Yang H, Geiger M. Cell penetrating SERPINA5 (Protein C inhibitor, PCI): More questions than answers. Semin Cell Dev Biol. 2017;62:187‑93. DOI:10.1016/j.semcdb.2016.10.007
23. Olivot JM, Labreuche J, Broucker T De, et al. Thrombomodulin gene polymorphisms in brain infarction and mortality after stroke. J Neurol. 2008;4:514-9.
DOI:10.1007/s00415-008-0725-x
24. Dharmasaroja P, Dharmasaroja PA, Sobhon P. Increased plasma soluble thrombomodulin levels in cardioembolic stroke. Clin Appl Thromb Hemost. 2012;3:289-93. DOI:10.1177/1076029611432744
25. Brown LD, Cai TT, Dasgupta A. Interval Estimation for a Binomial Proportion. Statistical Science. 2001;2:101-33.
26. Garcia-Perez MA. On the confidence interval for the binomial parameter. Quality and Quantity. 2005;39:467-81.
27. Altman DJ, Gore SM, Gardner MJ. Statistical guidelines for contributors to medical journals. Br Med J (Clin Res Ed). 1983;6376:1489-93. DOI:10.1136/bmj.287.6385.132-b
28. Ланг Т.А., Сесик М. Описание статистики в медицине. Руководство для авторов, редакторов и рецензентов. М.: Практическая медицина, 2011 [Lang TA, Secic M. Opisanie statistiki v meditsine. Rukovodstvo dlia avtorov, redaktorov i retsenzentov. Moscow: Prakticheskaia meditsina, 2011 (in Russian)].
________________________________________________
1. Insul't: Rukovodstvo dlia vrachei. Pod red. LV Stakhovskoi, SV Kotova. Moscow: MIA, 2014 (in Russian).
2. Parfenov VA. Venous thromboembolic complications in ischemic stroke and their prevention. Neurological journal. 2012;5:4‑9 (in Russian).
3. Ryabinkina YuV, Gnedovskaya EV, Maksimova MYu, at al. Stroke: Incidence and risk factors for venous thromboembolic complications in intensive care unit. Anesteziologiya i reanimatologiya. 2015;60(5):54-59 (in Russian).
4. Esse R, Barroso M, Tavares de Almeida I, Castro R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int J Mol Sci. 2019; 20(4):867. DOI:10.3390/ijms20040867
5. Huimin F, Hao X, Yang S, et al. Study on the incidence and risk factor of silent cerebrovascular disease in young adults with first-ever stroke. Medicine (Baltimore). 2018;48:e13311. DOI:10.1097/MD.0000000000013311
6. Liu J, Quan J, Li Y, et al. Blood homocysteine levels could predict major adverse cardiac events in patients with acute coronary syndrome A STROBE-compliant observational study. Medicine (Baltimore). 2018;40:e12626. DOI:10.1097/MD.0000000000012626
7. Fan YL, Zhan R, Dong YF, et al. Significant interaction of hypertension and homocysteine on neurological severity in first-ever ischemic stroke patients. J Am Soc Hypertens. 2018;7:534-41. DOI:10.1016/j.jash.2018.03.011
8. Albert CM, Cook NR, Gaziano JM, et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: A randomized trial. JAMA J Am Med Assoc. 2008;299:2027036. DOI:10.1001/jama.299.17.2027
9. Martí-Carvajal AJ, Solà I, Lathyris D, Dayer M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2017;17;8(8):CD006612. DOI:10.1002/14651858.CD006612.pub5
10. Cho Х, Degen JL, Coller BS, et al. Fibrin but not adsorbed fibrinogen supports fibronectin assembly by spread platelets. Effects of the interaction of alphaIIb beta3 with the C terminus of the fibrinogen gamma-chain. Biol Chem. 2005;9:280-5. DOI:10.1074/jbc.M506289200
11. Berezovskaya GA, Karpenko MA, Petrishchev NN. Fibronectin – a risk factor or protection after intracoronary stenting? Regional Blood Circulation and Microcirculation. 2013;12(4):12-9 (in Russian).
12. Singh S, Houng AK, Wang D, Reed GL. Physiologic variations in blood plasminogen levels affect outcomes after acute cerebral thromboembolism in mice: a pathophysiologic role for microvascular thrombosis. J Thromb Haemost. 2016;9:1822-32. DOI:10.1111/jth.13390
13. Bachmann F, Kruithof EKO. Tissue plasminogen activator: Chemical and physiological aspects. Sem Thromb Haemostas. 1984;10:6-17. DOI:10.1055/s-2007-1004403
14. Tkachuk VA, Plekhanova OS, Beloglazova IB, Parfenova EV. The role of the multidomain structure of urokinase in the regulation of growth and vascular remodeling. Ukrainian Biochemical Journal. 2013;6:18-45 (in Russian).
15. Jung RG, Motazedian P, Ramirez FD, et al. Association between plasminogen activator inhibitor-1 and cardiovascular events: a systematic review and meta-analysis. Thromb J. 2018;16:12. DOI:10.1186/s12959-018-0166-4
16. Ozolina A, Strike E, Jaunalksne I, et al. PAI-1 and t-PA/PAI-1 complex potential markers of fibrinolytic bleeding after cardiac surgery employing cardiopulmonary bypass. BMC Anesthesiol. 2012;30:12-27. DOI:10.1186/1471-2253-12-27
17. Yildiz SY, Kuru P, Oner E, Agirbasli M. Functional Stability of Plasminogen Activator Inhibitor-1. ScientificWorldJournal. 2014;2014:858293. DOI:10.1155/2014/858293
18. Guruswamy R, El Ali A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci. 2017;3:496. DOI:10.3390/ijms18030496
19. Feinberg WM, Macy E, Cornell ES, et al. Plasmin-alpha2-antiplasmin complex in patients with atrial fibrillation. Stroke Prevention in Atrial Fibrillation Investigators. Thromb Haemost. 1999;1:100-3.
20. Shapir L, Gross B. Dynamic changes of D-dimer following stroke. Harefuah. 2017;5:302-6.
21. Li J, Gu C, Li D, et al. Effects of serum N-terminal pro B-type natriuretic peptide & D-dimer levels on patients with acute ischemic stroke. Pak J Med Sci. 2018;4:994-8. DOI:10.12669/pjms.344.15432
22. Yang H, Geiger M. Cell penetrating SERPINA5 (Protein C inhibitor, PCI): More questions than answers. Semin Cell Dev Biol. 2017;62:187‑93. DOI:10.1016/j.semcdb.2016.10.007
23. Olivot JM, Labreuche J, Broucker T De, et al. Thrombomodulin gene polymorphisms in brain infarction and mortality after stroke. J Neurol. 2008;4:514-9.
DOI:10.1007/s00415-008-0725-x
24. Dharmasaroja P, Dharmasaroja PA, Sobhon P. Increased plasma soluble thrombomodulin levels in cardioembolic stroke. Clin Appl Thromb Hemost. 2012;3:289-93. DOI:10.1177/1076029611432744
25. Brown LD, Cai TT, Dasgupta A. Interval Estimation for a Binomial Proportion. Statistical Science. 2001;2:101-33.
26. Garcia-Perez MA. On the confidence interval for the binomial parameter. Quality and Quantity. 2005;39:467-81.
27. Altman DJ, Gore SM, Gardner MJ. Statistical guidelines for contributors to medical journals. Br Med J (Clin Res Ed). 1983;6376:1489-93. DOI:10.1136/bmj.287.6385.132-b
28. Lang TA, Secic M. Opisanie statistiki v meditsine. Rukovodstvo dlia avtorov, redaktorov i retsenzentov. Moscow: Prakticheskaia meditsina, 2011 (in Russian).
1 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
2 АНО ДПО «Институт лабораторной медицины», Москва, Россия;
3 ФГАОУ ВО «Российский университет дружбы народов», Москва, Россия;
4 ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России, Москва, Россия
*ag_kochetov@dpo-ilm.ru
________________________________________________
Anatoly G. Kochetov*1,2, Olga V. Lyang3,4, Irina A. Zhirova3, Oleg O. Ivoylov3
1 Pirogov Russian National Research Medical University, Moscow, Russia;
2 Institute of Laboratory Medicine, Moscow, Russia;
3 People’s Friendship University of Russia (RUDN University), Moscow, Russia;
4 Federal Center for Brain and Neurotechnologies, Moscow, Russia
*ag_kochetov@dpo-ilm.ru