Исследование микроциркуляции и тканевого метаболизма в качестве ранних диагностических критериев риска развития диабетической стопы
Исследование микроциркуляции и тканевого метаболизма в качестве ранних диагностических критериев риска развития диабетической стопы
Мкртумян А.М., Звенигородская Л.А., Шинкин М.В. Исследование микроциркуляции и тканевого метаболизма в качестве ранних диагностических критериев риска развития диабетической стопы. Терапевтический архив. 2022;94(8):957–962. DOI: 10.26442/00403660.2022.08.201789
________________________________________________
Mkrtumyan AM, Zvenigorodskaya LA, Shinkin MV. The study of microcirculation and tissue metabolism as early diagnostic criteria for the risk of diabetic foot development. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(8):957–962. DOI: 10.26442/00403660.2022.08.201789
Исследование микроциркуляции и тканевого метаболизма в качестве ранних диагностических критериев риска развития диабетической стопы
Мкртумян А.М., Звенигородская Л.А., Шинкин М.В. Исследование микроциркуляции и тканевого метаболизма в качестве ранних диагностических критериев риска развития диабетической стопы. Терапевтический архив. 2022;94(8):957–962. DOI: 10.26442/00403660.2022.08.201789
________________________________________________
Mkrtumyan AM, Zvenigorodskaya LA, Shinkin MV. The study of microcirculation and tissue metabolism as early diagnostic criteria for the risk of diabetic foot development. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(8):957–962. DOI: 10.26442/00403660.2022.08.201789
Цель. Оценить состояние микроциркуляции и тканевого метаболизма в нижних конечностях у больных сахарным диабетом 2-го типа методами лазерной допплеровской флоуметрии и лазерной флуоресцентной спектроскопии с проведением провокационных проб (тепловой и холодовой). Материалы и методы. Обследованы 30 пациентов. Больные разделены на 3 группы в зависимости от проводимой сахароснижающей терапии (метформин, эмпаглифлозин, дапаглифлозин). Группу сравнения составляли 12 волонтеров, не имевших нарушений углеводного обмена. Результаты. Выявлено: показатель гликированного гемоглобина достоверно снизился во всех 3 группах; значительной динамики в состоянии микроциркуляторного русла не наблюдалось ни в одной из 3 групп; во всех группах отмечалось улучшение показателей тканевого метаболизма, однако и в данном случае значительной динамики не наблюдалось ни в одной из 3 групп, что свидетельствует о необходимости проведения провокационных проб. Заключение. Проведение нагрузочных проб позволяет выявить адаптивные возможности тканей (тепловая проба) и скрытые нарушения тканевого метаболизма (холодовая проба).
Aim. To assess the state of the microvasculature, tissue metabolism and its reserve capabilities for the purpose of early intervention for the prevention of diabetic foot syndrome. Materials and methods. Thirty patients were examined. The patients were divided into three groups depending on the hypoglycemic therapy (metformin, empagliflozin, dapagliflozin). The comparison group consisted of 12 volunteers who did not have carbohydrate metabolism disorders. Results. It was found: the HbA1c indicator significantly decreased in all three groups; significant dynamics in the state of the microvasculature was not observed in any of the three groups; in all groups, there was an improvement in tissue metabolism, however, in this case, no significant dynamics were observed in any of the 3 groups, which indicates the need for provocative tests. Conclusion. For this purpose, the authors recommend the method of combined use of laser Doppler flowmetry and laser fluorescence spectroscopy. This technique allows diagnosing the state of the microvasculature and tissue metabolism and its reserve capabilities, using thermal and cold tests.
1. IDF Diabetes Atlas. 10th ed., 2021.
2. Hanefeld M, Monnier L, Schnell O, Owens D. Early Treatment with Basal Insulin Glargine in People with Type 2 Diabetes: Lessons from ORIGIn and Other Cardiovascular Trials. Diabetes Ther. 2016;7(2):187-201. DOI:10.1007/s13300-016-0153-3
3. Светлова О.В., Гурьева И.В. Новый уровень технологий – новый уровень самоконтроля в управлении сахарным диабетом. Медицинский Совет. 2015;(7):48-50 [Svetlova OV, Guryeva IV. A new level of technology is a new level of self-control in the management of diabetes. Medical Counsil. 2015;(7):48-50 (in Russian)]. DOI:10.21518/2079-701X-2015-7-48-50
4. Svetlova OV, Gurieva IV. Basic principles of diagnosis and treatment of diabetic autonomic neuropathy. Doktor. Ru. 2013;1(79):94-100.
5. Гурьева И.В., Светлова О.В. Возможности метаболической терапии при лечении микро- и макрососудистых осложнений сахарного диабета: роль таурина. Эндокринология: новости, мнения, обучение. 2019;8(2):42-9 [Gurieva IV, Svetlova OV. Possibilities of metabolic therapy in the treatment of micro- and macrovascular complications of diabetes mellitus: the role of taurine. Endokrinologiya: novosti, mneniya, obuchenie. 2019;8(2):42-9 (in Russian)]. DOI:10.24411/2304-9529-2019-12005
6. Галстян Г.Р., Токмакова А.Ю., Егорова Д.Н., и др. Клинические рекомендации по диагностике и лечению синдрома диабетической стопы. Раны и раневые инфекции. Журнал имени профессора Б.М. Костюченка. 2015;2(3):63-83 [Galstyan GR, Tokmakova AYu, Egorova DN, et al. Clinical guidelines for diagnosis and treatment of diabetic foot syndrome. Wounds and wound infections. The prof. B.M. Kostyuchenok Journal. 2015;2(3):63-83 (in Russian)]. DOI:10.17650/2408-9613-2015-2-3
7. Бардюгов П.С., Паршиков М.В., Галстян Г.Р., Ярыгин Н.В. Показания к различным вариантам ортопедической коррекции деформаций стопы при диабетической нейроостеоартропатии. Сахарный диабет. 2020;23(4):374-85 [Bardiugov PS, Parshikov MV, Galstyan GR, Yarygin NV. Indications for various options of foot deformities orthopedic correction in diabetic neuroosteoarthropathy. Diabetes Mellitus. 2020;23(4):374-85 (in Russian)]. DOI:10.14341/DM12271
8. Комелягина Е.Ю., Анциферов М.Б. Особенности заживления ран у больных с синдромом диабетической стопы. Эндокринология: новости, мнения, обучение. 2018;7(4):42-7 [Komelyagina EYu, Antsiferov MB. Wound healing in diabetic foot patients. Endocrinology: News, Opinions, Training. 2018;7(4):42-7 (in Russian)]. DOI:10.24411/2304-9529-2018-14005
9. Галстян Г.Р., Викулова О.К., Исаков М.А., и др. Эпидемиология синдрома диабетической стопы и ампутаций нижних конечностей в Российской Федерации по данным Федерального регистра больных сахарным диабетом (2013–2016 гг.). Сахарный диабет. 2018;21(3):170-7 [Galstyan GR, Vikulova OK, Isakov MA, et al. Trends in the epidemiology of diabetic foot and lower limb amputations in Russian Federation according to the Federal Diabetes Register (2013–2016). Diabetes Mellitus. 2018;21(3):170-7 (in Russian)]. DOI:10.14341/DM9688
10. Поленов С.А. Основы микроциркуляции. Регионарное кровообращение и микроциркуляция. 2008;7(1):5-19 [Polenov SA. Fundamentals of microcirculation. Regional Blood Circulation and Microcirculation. 2008;7(1):5-19 (in Russian)].
11. Klonizakis M, Manning G, Lingam K, et al. Effects of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication. Clin Hemorheol Microcirc. 2015;61(3):439-44.
12. Крупаткин А.И., Сидоров В.В. Функциональная диагностика состояния микроциркуляторно-тканевых систем. Руководство для врачей. Изд. 2-е. М.: Ленанд, 2016 [Krupatkin AI, Sidorov VV. Funktsional'naia diagnostika sostoianiia mikrotsirkuliatorno-tkanevykh sistem. Rukovodstvo dlia vrachei. Izd. 2-e. Moscow: Lenand, 2016 (in Russian)].
13. Kvernedo K, Starxrud LE, Salerud EG. Assesment of human muscle blood perfusion with single fiber laser-Doppler flowmetry. Microvascular Research. 1991;57:298-309.
14. Van Der Heijden DJ, van Leeuwen MA, Janssens GN, et al. Body mass index is associated with microvascular endothelial dysfunction in patients with treated metabolic risk factors and suspected coronary artery disease. J Am Heart Assoc. 2017. DOI:10.1161/JAHA.117.006082
15. Raposio E, Bertozzi N, Moretti R, et al. Laser Doppler Flowmetry and Trans cutaneous Oximetry in Chronic Skin Ulcers: A Comparative Evaluation. Clinical Trial Wounds. 2017;29(7):190-5.
16. Ishii T, Takabe S, Yanagawa Y, et al. Laser Doppler blood flowmeter as a useful instrument for the early detection of lower extremity peripheral arterial disease in hemodialysis patients: an observational study. BMC Nephrol. 2019;20:470. DOI:10.1186/s12882-019-1653-y
17. Rothenberger J, Krauss S, Held M, et al. A quantitative analysis of microcirculation in sore-prone pressure areas on conventional and pressure relief hospital mattresses using laser Doppler flowmetry and tissue spectrophotometry. J Tissue Viability. 2014;23(4):129-36. DOI:10.1016/j.jtv.2014.05.001
18. Nakagami G, Sari Y, Nagase T, et al. Evaluation of the usefulness of skin blood flow measurements by laser speckle flowgraphy in pressure-induced ischemic wounds in rats. Ann Plast Surg. 2010;64(3):351-4. DOI:10.1097/SAP.0b013e3181a73078
19. Corrêa MJU, Perazzio SF, Andrade LEC, et al. Quantification of basal digital blood flow and after cold stimulus by laser Doppler imaging in patients with systemic sclerosis. Rev Bras Reumatol. 2010;50:128-40.
20. Høyer C, Sandermann J, Paludan JPD, et al. Diagnostic accuracy of laser Doppler flowmetry versus strain gauge plethysmography for segmental pressure measurement. J Vasc Surg. 2013;58:1563-70. DOI:10.1016/j.jvs.2013.06.057
21. Функциональная диагностика состояния микроциркуляторно-тканевых систем: колебания, информация, нелинейность. Руководство для врачей. Под ред. А.И. Крупаткина, В.В. Сидорова. М.: Ленанд, 2020 [Funktsional'naia diagnostika sostoianiia mikrotsirkuliatorno-tkanevykh sistem: kolebaniia, informatsiia, nelineinost'. Rukovodstvo dlia vrachei. Pod red. AI Krupatkina, VV Sidorova. Moscow: Lenand, 2020 (in Russian)].
22. Сидоров В.В., Рыбаков Ю.А., Гукасов В.М. Диагностический подход для оценки состояния микроциркуляторно-тканевой системы с использованием лазерных технологий и температурной фукциональной пробы. Инноватика и экспертиза. 2018;1(22):135-41 [Sidorov VV, Rybakov YuA, Gukasov VM. Diagnostic approach for assessing the state of the microciculatory-tissue system using laser technologies and temperature functional testing. Innovatika i ekspertiza. 2018;1(22):135-41 (in Russian)].
23. Welch BL. The Generalization of `Student’s' Problem when Several Different Population Variances are Involved. Biometrika. 1947;34(1/2):28-35.
________________________________________________
1. IDF Diabetes Atlas. 10th ed., 2021.
2. Hanefeld M, Monnier L, Schnell O, Owens D. Early Treatment with Basal Insulin Glargine in People with Type 2 Diabetes: Lessons from ORIGIn and Other Cardiovascular Trials. Diabetes Ther. 2016;7(2):187-201. DOI:10.1007/s13300-016-0153-3
3. Svetlova OV, Guryeva IV. A new level of technology is a new level of self-control in the management of diabetes. Medical Counsil. 2015;(7):48-50 (in Russian).
DOI:10.21518/2079-701X-2015-7-48-50
4. Svetlova OV, Gurieva IV. Basic principles of diagnosis and treatment of diabetic autonomic neuropathy. Doktor. Ru. 2013;1(79):94-100.
5. Gurieva IV, Svetlova OV. Possibilities of metabolic therapy in the treatment of micro- and macrovascular complications of diabetes mellitus: the role of taurine. Endokrinologiya: novosti, mneniya, obuchenie. 2019;8(2):42-9 (in Russian). DOI:10.24411/2304-9529-2019-12005
6. Galstyan GR, Tokmakova AYu, Egorova DN, et al. Clinical guidelines for diagnosis and treatment of diabetic foot syndrome. Wounds and wound infections. The prof. B.M. Kostyuchenok Journal. 2015;2(3):63-83 (in Russian). DOI:10.17650/2408-9613-2015-2-3
7. Bardiugov PS, Parshikov MV, Galstyan GR, Yarygin NV. Indications for various options of foot deformities orthopedic correction in diabetic neuroosteoarthropathy. Diabetes Mellitus. 2020;23(4):374-85 (in Russian). DOI:10.14341/DM12271
8. Komelyagina EYu, Antsiferov MB. Wound healing in diabetic foot patients. Endocrinology: News, Opinions, Training. 2018;7(4):42-7 (in Russian). DOI:10.24411/2304-9529-2018-14005
9. Galstyan GR, Vikulova OK, Isakov MA, et al. Trends in the epidemiology of diabetic foot and lower limb amputations in Russian Federation according to the Federal Diabetes Register (2013–2016). Diabetes Mellitus. 2018;21(3):170-7 (in Russian). DOI:10.14341/DM9688
10. Polenov SA. Fundamentals of microcirculation. Regional Blood Circulation and Microcirculation. 2008;7(1):5-19 (in Russian).
11. Klonizakis M, Manning G, Lingam K, et al. Effects of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication. Clin Hemorheol Microcirc. 2015;61(3):439-44.
12. Krupatkin AI, Sidorov VV. Funktsional'naia diagnostika sostoianiia mikrotsirkuliatorno-tkanevykh sistem. Rukovodstvo dlia vrachei. Izd. 2-e. Moscow: Lenand, 2016 (in Russian).
13. Kvernedo K, Starxrud LE, Salerud EG. Assesment of human muscle blood perfusion with single fiber laser-Doppler flowmetry. Microvascular Research. 1991;57:298-309.
14. Van Der Heijden DJ, van Leeuwen MA, Janssens GN, et al. Body mass index is associated with microvascular endothelial dysfunction in patients with treated metabolic risk factors and suspected coronary artery disease. J Am Heart Assoc. 2017. DOI:10.1161/JAHA.117.006082
15. Raposio E, Bertozzi N, Moretti R, et al. Laser Doppler Flowmetry and Trans cutaneous Oximetry in Chronic Skin Ulcers: A Comparative Evaluation. Clinical Trial Wounds. 2017;29(7):190-5.
16. Ishii T, Takabe S, Yanagawa Y, et al. Laser Doppler blood flowmeter as a useful instrument for the early detection of lower extremity peripheral arterial disease in hemodialysis patients: an observational study. BMC Nephrol. 2019;20:470. DOI:10.1186/s12882-019-1653-y
17. Rothenberger J, Krauss S, Held M, et al. A quantitative analysis of microcirculation in sore-prone pressure areas on conventional and pressure relief hospital mattresses using laser Doppler flowmetry and tissue spectrophotometry. J Tissue Viability. 2014;23(4):129-36. DOI:10.1016/j.jtv.2014.05.001
18. Nakagami G, Sari Y, Nagase T, et al. Evaluation of the usefulness of skin blood flow measurements by laser speckle flowgraphy in pressure-induced ischemic wounds in rats. Ann Plast Surg. 2010;64(3):351-4. DOI:10.1097/SAP.0b013e3181a73078
19. Corrêa MJU, Perazzio SF, Andrade LEC, et al. Quantification of basal digital blood flow and after cold stimulus by laser Doppler imaging in patients with systemic sclerosis. Rev Bras Reumatol. 2010;50:128-40.
20. Høyer C, Sandermann J, Paludan JPD, et al. Diagnostic accuracy of laser Doppler flowmetry versus strain gauge plethysmography for segmental pressure measurement. J Vasc Surg. 2013;58:1563-70. DOI:10.1016/j.jvs.2013.06.057
21. Funktsional'naia diagnostika sostoianiia mikrotsirkuliatorno-tkanevykh sistem: kolebaniia, informatsiia, nelineinost'. Rukovodstvo dlia vrachei. Pod red. AI Krupatkina, VV Sidorova. Moscow: Lenand, 2020 (in Russian).
22. Sidorov VV, Rybakov YuA, Gukasov VM. Diagnostic approach for assessing the state of the microciculatory-tissue system using laser technologies and temperature functional testing. Innovatika i ekspertiza. 2018;1(22):135-41 (in Russian).
23. Welch BL. The Generalization of `Student’s' Problem when Several Different Population Variances are Involved. Biometrika. 1947;34(1/2):28-35.
1 ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы, Москва, Россия;
2 ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, Москва, Россия
*m.shinkin@mknc.ru
________________________________________________
Ashot M. Mkrtumyan1,2, Larissa A. Zvenigorodskaya1, Mikhail V. Shinkin*1
1 Loginov Moscow Clinical Scientific Center, Moscow, Russia;
2 Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
*m.shinkin@mknc.ru