Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Роль интерлейкина-1 в развитии заболеваний человека: перспективы фармакотерапии. Обзор литературы - Журнал Терапевтический архив №8 Вопросы диагностики и лечения 2022
Роль интерлейкина-1 в развитии заболеваний человека: перспективы фармакотерапии. Обзор литературы
Насонов Е.Л. Роль интерлейкина-1 в развитии заболеваний человека: перспективы фармакотерапии. Обзор литературы. Терапевтический архив. 2022;94(8):999–1005. DOI: 10.26442/00403660.2022.08.201781
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
По современным представлениям, иммуновоспалительные заболевания человека (ИВЗ) в зависимости от преобладающих механизмов иммунопатогенеза разделяются на 2 основные категории: аутоиммунные и аутовоспалительные. В то же время в патогенезе большинства ИВЗ принимают участие и аутоиммунные, и аутовоспалительные механизмы, сложное взаимодействие которых находит отражение в полиморфизме клинических проявлений, вариантов течения, исходов и эффективности терапии. Предполагается, что при ИВЗ гиперпродукция цитокинов семейства интерлейкина (ИЛ)-1, являющегося одним из ключевых регуляторов врожденного иммунитета, определяет «перекрест» между механизмами аутовоспаления и аутоиммунитета. В настоящее время для подавления патологических эффектов ИЛ-1 в клинической практике используют препараты анакинра – рекомбинантный негликозилированый аналог антагониста рецептора ИЛ-1, блокирующий сигнализацию как ИЛ-1b, так и ИЛ-1a, и канакинумаб – моноклональные антитела к ИЛ-1b. Анализ результатов клинического применения этих препаратов свидетельствует о том, что ингибицию ИЛ-1 следует рассматривать как перспективное направление фармакотерапии системных аутовоспалительных заболеваний и критических состояний, связанных с развитием гипервоспаления, у детей и взрослых.
Ключевые слова: системные аутовоспалительные заболевания, интерлейкин-1, анакинра, канакинумаб, COVID-19
Keywords: systemic autoinflammatory diseases, interleukin-1, anakinra, canakinumab, COVID-19
Ключевые слова: системные аутовоспалительные заболевания, интерлейкин-1, анакинра, канакинумаб, COVID-19
________________________________________________
Keywords: systemic autoinflammatory diseases, interleukin-1, anakinra, canakinumab, COVID-19
Полный текст
Список литературы
1. McGonagle D, McDermott MF. A Proposed Classification of the Immunological Diseases. PLoS Med. 2006;3(8):e297. DOI:10.1371/journal.pmed.0030297
2. Szekanecz Z, McInnes IB, Schett G, et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-95. DOI:10.1038/s41584-021-00652-9
3. Dinarello CA. An expanding role for interleukin-1 blockade fr om gout to cancer. Molecular Med. 2014;20(Suppl. 1):S43-58. DOI:10.2119/molmed.2014.00232
4. Насонов Е.Л., Елисеев М.С. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2016;54(1):60-77 [Nasonov EL, Eliseev MS. Role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2016;54(1):60-77 (in Russian)]. DOI:10.14412/1995-4484-2016-60-77
5. Doria A, Zen M, Bettio S, et al. Autoinflammation and autoimmunity: bridging the divide. Autoimmun Rev. 2012;12(1):22-30. DOI:10.1016/j.autrev.2012.07.018
6. Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun Rev. 2020;19(9):102617. DOI:10.1016/j.autrev.2020.102617
7. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14-24. DOI:10.1038/nrrheum.2016.166
8. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32. DOI:10.1038/s41584-019-0277-8
9. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-52. DOI:10.1038/nrd3800
10. Malcova H, Milota T, Strizova Z, et al. Interleukin-1 Blockade in Polygenic Autoinflammatory Disorders: Wh ere Are We now? Front Pharmacol. 2021;11:619273. DOI:10.3389/fphar.2020.619273
11. Calabrese L, Fiocco Z, Satoh TK, et al. Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 2022;186(6):925-41. DOI:10.1111/bjd.20975
12. Bettiol A, Lopalco G, Emmi G, et al. Unveiling the Efficacy, Safety, and Tolerability of Anti-Interleukin-1 Treatment in Monogenic and Multifactorial Autoinflammatory Diseases. Int J Mol Sci. 2019;20(8):1898. DOI:10.3390/ijms20081898
13. Cavalli G, Dinarello CA. Anakinra Therapy for Non-cancer Inflammatory Diseases. Front Pharmacol. 2018;9:1157. DOI:10.3389/fphar.2018.01157. Erratum in: Front Pharmacol. 2019;10:148.
14. Stefania S, Colia R, Cinzia R, et al. Off-label use of anti-IL-1 drugs in rheumatic diseases. Int J Immunopathol Pharmacol. 2021;35:20587384211006584. DOI:10.1177/20587384211006584
15. Maniscalco V, Abu-Rumeileh S, Mastrolia MV, et al. The off-label use of anakinra in pediatric systemic autoinflammatory diseases. Ther Adv Musculoskelet Dis. 2020;12:1759720X20959575. DOI:10.1177/1759720X20959575
16. Cvetkovic RS, Keating G. Anakinra. BioDrugs. 2002;16(4):303-11;discussion 313-4. DOI:10.2165/00063030-200216040-00005
17. Gram H. Preclinical characterization and clinical development of ILARIS(®) (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem Biol. 2016;32:1-9. DOI:10.1016/j.cbpa.2015.12.003
18. Gram H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol Res. 2020;154:104139. DOI:10.1016/j.phrs.2019.01.023
19. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-31. DOI:10.1056/NEJMoa1707914
20. Ridker PM, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319-28. DOI:10.1016/S0140-6736(17)32814-3
21. Насонов Е.Л., Попкова Т.В. Атеросклероз: перспективы противовоспалительной терапии. Терапевтический архив. 2018;90(5):4-12 [Nasonov EL, Popkova TV. Atherosclerosis: perspectives of anti-inflammatory therapy. Terapevticheskii Arkhiv (Ter. Arkh.). 2018;90(5):4-12 (in Russian)]. DOI:10.26442/terarkh20189054-12
22. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis – from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610.
DOI:10.1038/s41573-021-00198-1
23. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
DOI:10.1016/S0140-6736(20)30628-0
24. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-73. DOI:10.1056/NEJMra2026131
25. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021;21(11):694-703. DOI:10.1038/s41577-021-00588-x
26. CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021;9(3):295-304. DOI:10.1016/S2213-2600(20)30556-7
27. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med. 2021;27(10):1752-60. DOI:10.1038/s41591-021-01499-z
28. Kyriazopoulou E, Huet T, Cavalli G, et al.; International Collaborative Group for Anakinra in COVID-19. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021;3(10):e690-7. DOI:10.1016/S2665-9913(21)00216-2
29. Kyriakoulis KG, Kollias A, Poulakou G, et al. The Effect of Anakinra in Hospitalized Patients with COVID-19: An Updated Systematic Review and Meta-Analysis. J Clin Med. 2021;10(19):4462. DOI:10.3390/jcm10194462
30. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. DOI:10.1038/s41591-021-01643-9
31. Gilboa M, Bornstein G, Ben-Zvi I, Grossman C. Macrophage activation syndrome complicating rheumatic diseases in adults: case-based review. Rheumatol Int. 2020;40(4):663-9. DOI:10.1007/s00296-019-04393-7
32. Ajeganova S, De Becker A, Schots R. Efficacy of high-dose anakinra in refractory macrophage activation syndrome in adult-onset Still's disease: when dosage matters in overcoming secondary therapy resistance. Ther Adv Musculoskelet Dis. 2020;12:1759720X20974858. DOI:10.1177/1759720X20974858
33. Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatol. 2020;2(5):276-82. DOI:10.1002/acr2.11135
34. Caricchio R, Abbate A, Gordeev I, et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA. 2021;326(3):230-9. DOI:10.1001/jama.2021.9508
35. Cremer PC, Sheng CC, Sahoo D, et al. Double-blind randomized proof-of-concept trial of canakinumab in patients with COVID-19 associated cardiac injury and heightened inflammation. Eur Heart J Open. 2021;1(1):oeab002. DOI:10.1093/ehjopen/oeab002
36. Generali D, Bosio G, Malberti F, et al. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int J Infect Dis. 2021;104:433-40. DOI:10.1016/j.ijid.2020.12.073
37. Katia F, Myriam DP, Ucciferri C, et al. Efficacy of canakinumab in mild or severe COVID-19 pneumonia. Immun Inflamm Dis. 2021;9(2):399-405. DOI:10.1002/iid3.400
38. Mastroianni A, Greco S, Chidichimo L, et al. Early use of canakinumab to prevent mechanical ventilation in select COVID-19 patients: A retrospective, observational analysis. Int J Immunopathol Pharmacol. 2021;35:20587384211059675. DOI:10.1177/20587384211059675
39. Potalivo A, Montomoli J, Facondini F, et al. Sixty-Day Mortality Among 520 Italian Hospitalized COVID-19 Patients According to the Adopted Ventilatory Strategy in the Context of an Integrated Multidisciplinary Clinical Organization: A Population-Based Cohort Study. Clin Epidemiol. 2020;12:1421-31. DOI:10.2147/CLEP.S278709
40. Ao G, Wang Y, Li A, et al. The effect of canakinumab on clinical outcomes in patients with COVID-19: A meta-analysis. J Infect. 2022;84(6):834-72. DOI:10.1016/j.jinf.2022.03.011
2. Szekanecz Z, McInnes IB, Schett G, et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-95. DOI:10.1038/s41584-021-00652-9
3. Dinarello CA. An expanding role for interleukin-1 blockade fr om gout to cancer. Molecular Med. 2014;20(Suppl. 1):S43-58. DOI:10.2119/molmed.2014.00232
4. Nasonov EL, Eliseev MS. Role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2016;54(1):60-77 (in Russian).
DOI:10.14412/1995-4484-2016-60-77
5. Doria A, Zen M, Bettio S, et al. Autoinflammation and autoimmunity: bridging the divide. Autoimmun Rev. 2012;12(1):22-30. DOI:10.1016/j.autrev.2012.07.018
6. Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun Rev. 2020;19(9):102617. DOI:10.1016/j.autrev.2020.102617
7. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14-24. DOI:10.1038/nrrheum.2016.166
8. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32. DOI:10.1038/s41584-019-0277-8
9. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-52. DOI:10.1038/nrd3800
10. Malcova H, Milota T, Strizova Z, et al. Interleukin-1 Blockade in Polygenic Autoinflammatory Disorders: Wh ere Are We now? Front Pharmacol. 2021;11:619273. DOI:10.3389/fphar.2020.619273
11. Calabrese L, Fiocco Z, Satoh TK, et al. Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 2022;186(6):925-41. DOI:10.1111/bjd.20975
12. Bettiol A, Lopalco G, Emmi G, et al. Unveiling the Efficacy, Safety, and Tolerability of Anti-Interleukin-1 Treatment in Monogenic and Multifactorial Autoinflammatory Diseases. Int J Mol Sci. 2019;20(8):1898. DOI:10.3390/ijms20081898
13. Cavalli G, Dinarello CA. Anakinra Therapy for Non-cancer Inflammatory Diseases. Front Pharmacol. 2018;9:1157. DOI:10.3389/fphar.2018.01157. Erratum in: Front Pharmacol. 2019;10:148.
14. Stefania S, Colia R, Cinzia R, et al. Off-label use of anti-IL-1 drugs in rheumatic diseases. Int J Immunopathol Pharmacol. 2021;35:20587384211006584. DOI:10.1177/20587384211006584
15. Maniscalco V, Abu-Rumeileh S, Mastrolia MV, et al. The off-label use of anakinra in pediatric systemic autoinflammatory diseases. Ther Adv Musculoskelet Dis. 2020;12:1759720X20959575. DOI:10.1177/1759720X20959575
16. Cvetkovic RS, Keating G. Anakinra. BioDrugs. 2002;16(4):303-11;discussion 313-4. DOI:10.2165/00063030-200216040-00005
17. Gram H. Preclinical characterization and clinical development of ILARIS(®) (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem Biol. 2016;32:1-9. DOI:10.1016/j.cbpa.2015.12.003
18. Gram H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol Res. 2020;154:104139. DOI:10.1016/j.phrs.2019.01.023
19. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-31. DOI:10.1056/NEJMoa1707914
20. Ridker PM, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319-28. DOI:10.1016/S0140-6736(17)32814-3
21. Nasonov EL, Popkova TV. Atherosclerosis: perspectives of anti-inflammatory therapy. Terapevticheskii Arkhiv (Ter. Arkh.). 2018;90(5):4-12 (in Russian). DOI:10.26442/terarkh20189054-12
22. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis – from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610.
DOI:10.1038/s41573-021-00198-1
23. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
DOI:10.1016/S0140-6736(20)30628-0
24. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-73. DOI:10.1056/NEJMra2026131
25. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021;21(11):694-703. DOI:10.1038/s41577-021-00588-x
26. CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021;9(3):295-304. DOI:10.1016/S2213-2600(20)30556-7
27. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med. 2021;27(10):1752-60. DOI:10.1038/s41591-021-01499-z
28. Kyriazopoulou E, Huet T, Cavalli G, et al.; International Collaborative Group for Anakinra in COVID-19. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021;3(10):e690-7. DOI:10.1016/S2665-9913(21)00216-2
29. Kyriakoulis KG, Kollias A, Poulakou G, et al. The Effect of Anakinra in Hospitalized Patients with COVID-19: An Updated Systematic Review and Meta-Analysis. J Clin Med. 2021;10(19):4462. DOI:10.3390/jcm10194462
30. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. DOI:10.1038/s41591-021-01643-9
31. Gilboa M, Bornstein G, Ben-Zvi I, Grossman C. Macrophage activation syndrome complicating rheumatic diseases in adults: case-based review. Rheumatol Int. 2020;40(4):663-9. DOI:10.1007/s00296-019-04393-7
32. Ajeganova S, De Becker A, Schots R. Efficacy of high-dose anakinra in refractory macrophage activation syndrome in adult-onset Still's disease: when dosage matters in overcoming secondary therapy resistance. Ther Adv Musculoskelet Dis. 2020;12:1759720X20974858. DOI:10.1177/1759720X20974858
33. Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatol. 2020;2(5):276-82. DOI:10.1002/acr2.11135
34. Caricchio R, Abbate A, Gordeev I, et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA. 2021;326(3):230-9. DOI:10.1001/jama.2021.9508
35. Cremer PC, Sheng CC, Sahoo D, et al. Double-blind randomized proof-of-concept trial of canakinumab in patients with COVID-19 associated cardiac injury and heightened inflammation. Eur Heart J Open. 2021;1(1):oeab002. DOI:10.1093/ehjopen/oeab002
36. Generali D, Bosio G, Malberti F, et al. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int J Infect Dis. 2021;104:433-40. DOI:10.1016/j.ijid.2020.12.073
37. Katia F, Myriam DP, Ucciferri C, et al. Efficacy of canakinumab in mild or severe COVID-19 pneumonia. Immun Inflamm Dis. 2021;9(2):399-405. DOI:10.1002/iid3.400
38. Mastroianni A, Greco S, Chidichimo L, et al. Early use of canakinumab to prevent mechanical ventilation in select COVID-19 patients: A retrospective, observational analysis. Int J Immunopathol Pharmacol. 2021;35:20587384211059675. DOI:10.1177/20587384211059675
39. Potalivo A, Montomoli J, Facondini F, et al. Sixty-Day Mortality Among 520 Italian Hospitalized COVID-19 Patients According to the Adopted Ventilatory Strategy in the Context of an Integrated Multidisciplinary Clinical Organization: A Population-Based Cohort Study. Clin Epidemiol. 2020;12:1421-31. DOI:10.2147/CLEP.S278709
40. Ao G, Wang Y, Li A, et al. The effect of canakinumab on clinical outcomes in patients with COVID-19: A meta-analysis. J Infect. 2022;84(6):834-72. DOI:10.1016/j.jinf.2022.03.011
2. Szekanecz Z, McInnes IB, Schett G, et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-95. DOI:10.1038/s41584-021-00652-9
3. Dinarello CA. An expanding role for interleukin-1 blockade fr om gout to cancer. Molecular Med. 2014;20(Suppl. 1):S43-58. DOI:10.2119/molmed.2014.00232
4. Насонов Е.Л., Елисеев М.С. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2016;54(1):60-77 [Nasonov EL, Eliseev MS. Role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2016;54(1):60-77 (in Russian)]. DOI:10.14412/1995-4484-2016-60-77
5. Doria A, Zen M, Bettio S, et al. Autoinflammation and autoimmunity: bridging the divide. Autoimmun Rev. 2012;12(1):22-30. DOI:10.1016/j.autrev.2012.07.018
6. Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun Rev. 2020;19(9):102617. DOI:10.1016/j.autrev.2020.102617
7. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14-24. DOI:10.1038/nrrheum.2016.166
8. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32. DOI:10.1038/s41584-019-0277-8
9. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-52. DOI:10.1038/nrd3800
10. Malcova H, Milota T, Strizova Z, et al. Interleukin-1 Blockade in Polygenic Autoinflammatory Disorders: Wh ere Are We now? Front Pharmacol. 2021;11:619273. DOI:10.3389/fphar.2020.619273
11. Calabrese L, Fiocco Z, Satoh TK, et al. Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 2022;186(6):925-41. DOI:10.1111/bjd.20975
12. Bettiol A, Lopalco G, Emmi G, et al. Unveiling the Efficacy, Safety, and Tolerability of Anti-Interleukin-1 Treatment in Monogenic and Multifactorial Autoinflammatory Diseases. Int J Mol Sci. 2019;20(8):1898. DOI:10.3390/ijms20081898
13. Cavalli G, Dinarello CA. Anakinra Therapy for Non-cancer Inflammatory Diseases. Front Pharmacol. 2018;9:1157. DOI:10.3389/fphar.2018.01157. Erratum in: Front Pharmacol. 2019;10:148.
14. Stefania S, Colia R, Cinzia R, et al. Off-label use of anti-IL-1 drugs in rheumatic diseases. Int J Immunopathol Pharmacol. 2021;35:20587384211006584. DOI:10.1177/20587384211006584
15. Maniscalco V, Abu-Rumeileh S, Mastrolia MV, et al. The off-label use of anakinra in pediatric systemic autoinflammatory diseases. Ther Adv Musculoskelet Dis. 2020;12:1759720X20959575. DOI:10.1177/1759720X20959575
16. Cvetkovic RS, Keating G. Anakinra. BioDrugs. 2002;16(4):303-11;discussion 313-4. DOI:10.2165/00063030-200216040-00005
17. Gram H. Preclinical characterization and clinical development of ILARIS(®) (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem Biol. 2016;32:1-9. DOI:10.1016/j.cbpa.2015.12.003
18. Gram H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol Res. 2020;154:104139. DOI:10.1016/j.phrs.2019.01.023
19. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-31. DOI:10.1056/NEJMoa1707914
20. Ridker PM, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319-28. DOI:10.1016/S0140-6736(17)32814-3
21. Насонов Е.Л., Попкова Т.В. Атеросклероз: перспективы противовоспалительной терапии. Терапевтический архив. 2018;90(5):4-12 [Nasonov EL, Popkova TV. Atherosclerosis: perspectives of anti-inflammatory therapy. Terapevticheskii Arkhiv (Ter. Arkh.). 2018;90(5):4-12 (in Russian)]. DOI:10.26442/terarkh20189054-12
22. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis – from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610.
DOI:10.1038/s41573-021-00198-1
23. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
DOI:10.1016/S0140-6736(20)30628-0
24. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-73. DOI:10.1056/NEJMra2026131
25. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021;21(11):694-703. DOI:10.1038/s41577-021-00588-x
26. CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021;9(3):295-304. DOI:10.1016/S2213-2600(20)30556-7
27. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med. 2021;27(10):1752-60. DOI:10.1038/s41591-021-01499-z
28. Kyriazopoulou E, Huet T, Cavalli G, et al.; International Collaborative Group for Anakinra in COVID-19. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021;3(10):e690-7. DOI:10.1016/S2665-9913(21)00216-2
29. Kyriakoulis KG, Kollias A, Poulakou G, et al. The Effect of Anakinra in Hospitalized Patients with COVID-19: An Updated Systematic Review and Meta-Analysis. J Clin Med. 2021;10(19):4462. DOI:10.3390/jcm10194462
30. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. DOI:10.1038/s41591-021-01643-9
31. Gilboa M, Bornstein G, Ben-Zvi I, Grossman C. Macrophage activation syndrome complicating rheumatic diseases in adults: case-based review. Rheumatol Int. 2020;40(4):663-9. DOI:10.1007/s00296-019-04393-7
32. Ajeganova S, De Becker A, Schots R. Efficacy of high-dose anakinra in refractory macrophage activation syndrome in adult-onset Still's disease: when dosage matters in overcoming secondary therapy resistance. Ther Adv Musculoskelet Dis. 2020;12:1759720X20974858. DOI:10.1177/1759720X20974858
33. Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatol. 2020;2(5):276-82. DOI:10.1002/acr2.11135
34. Caricchio R, Abbate A, Gordeev I, et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA. 2021;326(3):230-9. DOI:10.1001/jama.2021.9508
35. Cremer PC, Sheng CC, Sahoo D, et al. Double-blind randomized proof-of-concept trial of canakinumab in patients with COVID-19 associated cardiac injury and heightened inflammation. Eur Heart J Open. 2021;1(1):oeab002. DOI:10.1093/ehjopen/oeab002
36. Generali D, Bosio G, Malberti F, et al. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int J Infect Dis. 2021;104:433-40. DOI:10.1016/j.ijid.2020.12.073
37. Katia F, Myriam DP, Ucciferri C, et al. Efficacy of canakinumab in mild or severe COVID-19 pneumonia. Immun Inflamm Dis. 2021;9(2):399-405. DOI:10.1002/iid3.400
38. Mastroianni A, Greco S, Chidichimo L, et al. Early use of canakinumab to prevent mechanical ventilation in select COVID-19 patients: A retrospective, observational analysis. Int J Immunopathol Pharmacol. 2021;35:20587384211059675. DOI:10.1177/20587384211059675
39. Potalivo A, Montomoli J, Facondini F, et al. Sixty-Day Mortality Among 520 Italian Hospitalized COVID-19 Patients According to the Adopted Ventilatory Strategy in the Context of an Integrated Multidisciplinary Clinical Organization: A Population-Based Cohort Study. Clin Epidemiol. 2020;12:1421-31. DOI:10.2147/CLEP.S278709
40. Ao G, Wang Y, Li A, et al. The effect of canakinumab on clinical outcomes in patients with COVID-19: A meta-analysis. J Infect. 2022;84(6):834-72. DOI:10.1016/j.jinf.2022.03.011
________________________________________________
2. Szekanecz Z, McInnes IB, Schett G, et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-95. DOI:10.1038/s41584-021-00652-9
3. Dinarello CA. An expanding role for interleukin-1 blockade fr om gout to cancer. Molecular Med. 2014;20(Suppl. 1):S43-58. DOI:10.2119/molmed.2014.00232
4. Nasonov EL, Eliseev MS. Role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2016;54(1):60-77 (in Russian).
DOI:10.14412/1995-4484-2016-60-77
5. Doria A, Zen M, Bettio S, et al. Autoinflammation and autoimmunity: bridging the divide. Autoimmun Rev. 2012;12(1):22-30. DOI:10.1016/j.autrev.2012.07.018
6. Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun Rev. 2020;19(9):102617. DOI:10.1016/j.autrev.2020.102617
7. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14-24. DOI:10.1038/nrrheum.2016.166
8. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32. DOI:10.1038/s41584-019-0277-8
9. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-52. DOI:10.1038/nrd3800
10. Malcova H, Milota T, Strizova Z, et al. Interleukin-1 Blockade in Polygenic Autoinflammatory Disorders: Wh ere Are We now? Front Pharmacol. 2021;11:619273. DOI:10.3389/fphar.2020.619273
11. Calabrese L, Fiocco Z, Satoh TK, et al. Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 2022;186(6):925-41. DOI:10.1111/bjd.20975
12. Bettiol A, Lopalco G, Emmi G, et al. Unveiling the Efficacy, Safety, and Tolerability of Anti-Interleukin-1 Treatment in Monogenic and Multifactorial Autoinflammatory Diseases. Int J Mol Sci. 2019;20(8):1898. DOI:10.3390/ijms20081898
13. Cavalli G, Dinarello CA. Anakinra Therapy for Non-cancer Inflammatory Diseases. Front Pharmacol. 2018;9:1157. DOI:10.3389/fphar.2018.01157. Erratum in: Front Pharmacol. 2019;10:148.
14. Stefania S, Colia R, Cinzia R, et al. Off-label use of anti-IL-1 drugs in rheumatic diseases. Int J Immunopathol Pharmacol. 2021;35:20587384211006584. DOI:10.1177/20587384211006584
15. Maniscalco V, Abu-Rumeileh S, Mastrolia MV, et al. The off-label use of anakinra in pediatric systemic autoinflammatory diseases. Ther Adv Musculoskelet Dis. 2020;12:1759720X20959575. DOI:10.1177/1759720X20959575
16. Cvetkovic RS, Keating G. Anakinra. BioDrugs. 2002;16(4):303-11;discussion 313-4. DOI:10.2165/00063030-200216040-00005
17. Gram H. Preclinical characterization and clinical development of ILARIS(®) (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem Biol. 2016;32:1-9. DOI:10.1016/j.cbpa.2015.12.003
18. Gram H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol Res. 2020;154:104139. DOI:10.1016/j.phrs.2019.01.023
19. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-31. DOI:10.1056/NEJMoa1707914
20. Ridker PM, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319-28. DOI:10.1016/S0140-6736(17)32814-3
21. Nasonov EL, Popkova TV. Atherosclerosis: perspectives of anti-inflammatory therapy. Terapevticheskii Arkhiv (Ter. Arkh.). 2018;90(5):4-12 (in Russian). DOI:10.26442/terarkh20189054-12
22. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis – from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610.
DOI:10.1038/s41573-021-00198-1
23. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
DOI:10.1016/S0140-6736(20)30628-0
24. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-73. DOI:10.1056/NEJMra2026131
25. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021;21(11):694-703. DOI:10.1038/s41577-021-00588-x
26. CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021;9(3):295-304. DOI:10.1016/S2213-2600(20)30556-7
27. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med. 2021;27(10):1752-60. DOI:10.1038/s41591-021-01499-z
28. Kyriazopoulou E, Huet T, Cavalli G, et al.; International Collaborative Group for Anakinra in COVID-19. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021;3(10):e690-7. DOI:10.1016/S2665-9913(21)00216-2
29. Kyriakoulis KG, Kollias A, Poulakou G, et al. The Effect of Anakinra in Hospitalized Patients with COVID-19: An Updated Systematic Review and Meta-Analysis. J Clin Med. 2021;10(19):4462. DOI:10.3390/jcm10194462
30. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. DOI:10.1038/s41591-021-01643-9
31. Gilboa M, Bornstein G, Ben-Zvi I, Grossman C. Macrophage activation syndrome complicating rheumatic diseases in adults: case-based review. Rheumatol Int. 2020;40(4):663-9. DOI:10.1007/s00296-019-04393-7
32. Ajeganova S, De Becker A, Schots R. Efficacy of high-dose anakinra in refractory macrophage activation syndrome in adult-onset Still's disease: when dosage matters in overcoming secondary therapy resistance. Ther Adv Musculoskelet Dis. 2020;12:1759720X20974858. DOI:10.1177/1759720X20974858
33. Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatol. 2020;2(5):276-82. DOI:10.1002/acr2.11135
34. Caricchio R, Abbate A, Gordeev I, et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA. 2021;326(3):230-9. DOI:10.1001/jama.2021.9508
35. Cremer PC, Sheng CC, Sahoo D, et al. Double-blind randomized proof-of-concept trial of canakinumab in patients with COVID-19 associated cardiac injury and heightened inflammation. Eur Heart J Open. 2021;1(1):oeab002. DOI:10.1093/ehjopen/oeab002
36. Generali D, Bosio G, Malberti F, et al. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int J Infect Dis. 2021;104:433-40. DOI:10.1016/j.ijid.2020.12.073
37. Katia F, Myriam DP, Ucciferri C, et al. Efficacy of canakinumab in mild or severe COVID-19 pneumonia. Immun Inflamm Dis. 2021;9(2):399-405. DOI:10.1002/iid3.400
38. Mastroianni A, Greco S, Chidichimo L, et al. Early use of canakinumab to prevent mechanical ventilation in select COVID-19 patients: A retrospective, observational analysis. Int J Immunopathol Pharmacol. 2021;35:20587384211059675. DOI:10.1177/20587384211059675
39. Potalivo A, Montomoli J, Facondini F, et al. Sixty-Day Mortality Among 520 Italian Hospitalized COVID-19 Patients According to the Adopted Ventilatory Strategy in the Context of an Integrated Multidisciplinary Clinical Organization: A Population-Based Cohort Study. Clin Epidemiol. 2020;12:1421-31. DOI:10.2147/CLEP.S278709
40. Ao G, Wang Y, Li A, et al. The effect of canakinumab on clinical outcomes in patients with COVID-19: A meta-analysis. J Infect. 2022;84(6):834-72. DOI:10.1016/j.jinf.2022.03.011
Авторы
Е.Л. Насонов*1,2
1 ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*nasonov@irramn.ru
1 Nasonova Research Institute of Rheumatology, Moscow, Russia;
2 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*nasonov@irramn.ru
1 ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*nasonov@irramn.ru
________________________________________________
1 Nasonova Research Institute of Rheumatology, Moscow, Russia;
2 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*nasonov@irramn.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
