Клиническая значимость оценки экспрессии циркулирующих миРНК и толщины эпикардиальной жировой ткани по данным МРТ сердца у молодых пациентов с сахарным диабетом 1-го типа
Клиническая значимость оценки экспрессии циркулирующих миРНК и толщины эпикардиальной жировой ткани по данным МРТ сердца у молодых пациентов с сахарным диабетом 1-го типа
Венгржиновская О.И., Бондаренко И.З., Шацкая О.А., Тарбаева Н.В., Корнелюк А.Ю., Калашников В.Ю., Шестакова М.В., Мокрышева Н.Г. Клиническая значимость оценки экспрессии циркулирующих миРНК и толщины эпикардиальной жировой ткани по данным МРТ сердца у молодых пациентов с сахарным диабетом 1-го типа. Терапевтический архив. 2023;95(10):839–844. DOI: 10.26442/00403660.2023.10.202426
Vengrzhinovskaya OI, Bondarenko IZ, Shatskaya OA, Tarbaeva NV, Korneluk AYu, Kalashnikov VYu, Shestakova MV, Mokrysheva NG. Clinical importance of evaluation of circulating miRNA expression and epicardial adipose tissue thickness as predictors of cardiovascular pathology in young patients with type 1 diabetes mellitus. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(10):839–844. DOI: 10.26442/00403660.2023.10.202426
Клиническая значимость оценки экспрессии циркулирующих миРНК и толщины эпикардиальной жировой ткани по данным МРТ сердца у молодых пациентов с сахарным диабетом 1-го типа
Венгржиновская О.И., Бондаренко И.З., Шацкая О.А., Тарбаева Н.В., Корнелюк А.Ю., Калашников В.Ю., Шестакова М.В., Мокрышева Н.Г. Клиническая значимость оценки экспрессии циркулирующих миРНК и толщины эпикардиальной жировой ткани по данным МРТ сердца у молодых пациентов с сахарным диабетом 1-го типа. Терапевтический архив. 2023;95(10):839–844. DOI: 10.26442/00403660.2023.10.202426
Сердечно-сосудистым заболеваниям (ССЗ) при сахарном диабете 1-го типа (СД 1) предшествуют бессимптомные изменения в геометрии сердца. Одними из ранних показателей начала ремоделирования сердца и одновременно предикторами неблагоприятного кардиоваскулярного прогноза являются утолщение эпикардиальной жировой ткани (ЭЖТ), секретирующей ряд адипокинов, и кардиоспецифические миРНК. Для повышения эффективности первичной профилактики ССЗ у молодых пациентов с СД 1 провели поиск новых структурно-функциональных и эпигенетических маркеров. Цель. Оценить состояние сердечно-сосудистой системы (ССС) по данным магнитно-резонансной томографии (МРТ) сердца с Т1-картированием при СД 1 без ССЗ. Выявить связь эпигенетических маркеров (циркулирующие miR-126-5p, miR-21-5p) и адипокинов c состоянием CCC при СД 1. Предложить персонифицированный подход для пациентов с СД 1 с начальными признаками ремоделирования миокарда и/или при отклонениях кардиоспецифических миРНК. Материалы и методы. В исследование включили 40 пациентов: 30 с СД 1 (возраст 26,2±7,4 года), 10 без СД 1 (26,4±8,2 года). Пациентам провели общеклиническое обследование, биоимпедансометрию, электрокардиографию, МРТ сердца с Т1-картированием, определение адипонектина, резистина, висфатина, N-концевого натрийуретического пептида проВ-типа, miR-126-5p, miR-21-5p. Результаты. У пациентов с СД 1 выявили более низкие уровни кардиопротективного miR-126-5p (р=0,046). По данным МРТ сердца при СД 1 выявили признаки ремоделирования миокарда – утолщение межжелудочковой перегородки (р=0,001), задней стенки (р=0,012) и относительной толщины стенок (р=0,048) левого желудочка, увеличение толщины ЭЖТ (р=0,001). У 16% пациентов из группы СД 1 обнаружили диффузный фиброз миокарда. При СД 1 увеличена экспрессия висфатина (р=0,036) и снижена экспрессия адипонектина (р=0,043). Заключение. При СД 1 уже в молодом возрасте наблюдаются структурно-функциональные изменения ССС (в том числе утолщение ЭЖТ), смещение экспрессии miR-126-5p и адипокинового профиля. При СД 1 у 16% пациентов выявили диффузный фиброз миокарда. Полученные данные могут быть использованы для выделения групп повышенного риска развития ССЗ при СД 1 и послужить основой для определения срока начала превентивной терапии.
Ключевые слова: сахарный диабет 1-го типа, МРТ сердца, Т1-картирование, T1 mapping, висфатин, резистин, адипонектин, миРНК, miR‑126-5p, miR-21-5р, биоимпедансометрия
________________________________________________
Cardiovascular disease (CVD) in type 1 diabetes mellitus (T1DM) is preceded by asymptomatic changes in the geometry of the heart. The only symptoms of the beginning of cardiac remodeling and concomitant predictors of an unfavorable cardiovascular prognosis are: thickening of epicardial fat (EAT), secreting a number of adipokines, and cardiospecific miRNAs. To improve the effectiveness of prevention of CVD in young patients with DM1, a search was made for structural-functional and epigenetic markers. Aim. To assess the state of the cardiovascular system according to MRI-heart with T1 mapping in T1DM without CVD. To reveal the relationship of epigenetic markers (circulating miR-126-5p, miR-21-5p) and adipokines with cardiovascular system in T1DM. Suggested personalized approach to patients with T1DM with initial manifestations of joint remodeling and/or exclusion of cardiospecific microRNA. Materials and methods. The study included 40 patients: 30 with T1DM (age 26.2±7.4 years), 10 without T1DM (26.4±8.2). The patients underwent a general clinical examination, bioimpedancemetry, electrocardiography, MRI of the heart with T1 mapping, determination of adiponectin, resistin, visfatin, NT-proBNP, miR-126-5p, miR-21-5p. Results. Patients with T1DM had lower levels of cardioprotective miR-126-5p (p=0.046). According to MRI of the heart in T1DM, signs of vascular remodeling were revealed – thickening of the interventricular septum (p=0.001), posterior wall (p=0.012) and relative size of the walls (p=0.048) of the left ventricle, an increase in EAT density (p=0.001). Diffuse vascular fibrosis was found in 16% of patients from the T1DM group. Also, in T1DM, the expression of visfatin is increased (p=0.036) and adiponectin is reduced (p=0.043). Conclusion. Structural and functional changes in the cardiovascular system (including thickening of the EAT), shifts in miR-126-5p expression and adipokines profile are observed already at a young age in patients with T1DM. In T1DM, diffuse vascular fibrosis is detected in 16% of patients. The data obtained were used to identify the group increased risk of developing CVD in T1DM and served as the basis for determining the timing of the start of preventive therapy.
1. Дедов И.И., Шестакова М.В., Викулова О.К., и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204-21 [Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the diabetes register data as of 01.01.2021. Diabetes Mellitus. 2021;24(3):204-21 (in Russian)]. DOI:10.14341/DM12759
2. Шестакова М.В., Викулова О.К., Исаков М.А., Дедов И.И. Сахарный диабет и COVID-19: анализ клинических исходов по данным регистра сахарного диабета Российской Федерации. Проблемы эндокринологии. 2020;66(1):35-46 [Shestakova MV, Vikulova OK, Isakov MA, Dedov II. Diabetes and COVID-19: analysis of the clinical outcomes according to the data of the Russian Diabetes Registry. Probl Endokrinol (Mosk). 2020;66(1):35-46 (in Russian)]. DOI:10.14341/probl12458
3. Баев М.С., Рыжков А.В., Гаврилова Е.А., Труфанов Г.Е. Клиническое применение Т1-картирования миокарда: обзор литературы и первый опыт клинического применения. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):17-26 [Baev MS, Ryzhkov AV, Gavrilova EA, Trufanov GE. Clinical application of T1 mapping of the myocardium: a review of the literature and the first experience of clinical application. The Siberian Journal of Clinical and Experimental Medicine. 2022;37(1):17-26 (in Russian)]. DOI:10.29001/2073-8552-2022-37-1-17-26
4. Reiter G, Reiter C, Kräuter C, et al. Cardiac magnetic resonance T1 mapping. Part 1: Aspects of acquisition and evaluation. Eur J Radiol. 2018;109:223-34. DOI:10.1016/j.ejrad.2018.10.011
5. Baker AR, Silva NF, Quinn DW, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1. DOI:10.1186/1475-2840-5-1
6. Мустафина И.А., Ионин В.А., Долганов А.А., и др. Роль эпикардиальной жировой ткани в развитии сердечно-сосудистых заболеваний. Российский кардиологический журнал. 2022;27(1S):4872 [Mustafina IA, Ionin VA, Dolganov AA, et al. Role of epicardial fat tissue in the development of cardiovascular diseases. Russian Journal of Cardiology. 2022;27(1S):4872 (in Russian)]. DOI:10.15829/1560-4071-2022-4872
7. Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005;46(7):1369-79.
DOI:10.1194/jlr.M400373-JLR200
8. Malavazos AE, Di Leo G, Secchi F, et al. Relation of echocardiographic epicardial fat thickness and myocardial fat. Am J Cardiol. 2010;105(12):1831-5. DOI:10.1016/j.amjcard.2010.01.368
9. Bailey SD, Loredo-Osti JC, Lepage P, et al. Common polymorphisms in the promoter of the visfatin gene (PBEF1) influence plasma insulin levels in a French-Canadian population. Diabetes. 2006;55(10):2896‑902. DOI:10.2337/db06-0189
10. Moon B, Kwan JJ-M, Duddy N, et al. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol. Metab. 2003;285(1):E106-15. DOI:10.1152/ajpendo.00457.2002
11. Mahabadi AA, Massaro JM, Rosito GA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30(7):850-6. DOI:10.1093/eurheartj/ehn573
12. Ding J, Hsu FC, Harris TB, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90(3):499-504. DOI:10.3945/ajcn.2008.27358
13. Ambale-Venkatesh B, Armstrong AC, Liu CY, et al. Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2014;15(4):442-9. DOI:10.1093/ehjci/jet189
14. Bozkurt B, Coats AJ, Tsutsui H, et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021;S1071‑9164(21)00050-6. DOI:10.1016/j.cardfail.2021.01.022
15. Гареев И.Ф., Бейлерли О.А. Циркулирующие микроРНК как биомаркеры: какие перспективы? Профилактическая медицина. 2018;21(6):142-50 [Gareev IF, Beylerli OA. Circulating microRNAs as biomarkers: what are perspectives? Profilakticheskaya Meditsina. 2018;21(6):142‑50 (in Russian)]. DOI:10.17116/profmed201821061142
16. Nazari-Jahantigh M, Egea V, Schober A, Weber C. MicroRNA-specific regulatory mechanisms in atherosclerosis. J Mol Cell Cardiol. 2015;89(Pt. A):35-41. DOI:10.1016/j.yjmcc.2014.10.021
17. Zhang Y, Yuan B, Xu Y, et al. MiR-208b/miR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-β1/Smad-3 Signaling Pathway: An in vitro and in vivo Study. Front Cardiovasc Med. 2022;9:924629. DOI:10.3389/fcvm.2022.924629
18. Стоногина Д.А., Желанкин А.В., Аксельрод А.С., и др. Циркулирующие микроРНК как биомаркеры риска сердечно-сосудистых осложнений у больных с ИБС: достижения и трудности последних лет. Кардиология и сердечно-сосудистая хирургия. 2019;12(1):17‑24 [Stonogina DA, Zhelankin AV, Akselrod AS, et al. Circulating microRNAs as biomarkers of the risk of cardiovascular complications in patients with coronary artery disease: achievements and difficulties in recent years. Cardiology and Cardiovascular Surgery. 2019;12(1):17‑24 (in Russian)]. DOI:10.17116/kardio20191201117
19. Sothivelr V, Hasan MY, Saffian SM, et al. Revisiting miRNA-21 as a Therapeutic Strategy for Myocardial Infarction: A Systematic Review. J Cardiovasc Pharmacol.
2022;80(3):393-406. DOI:10.1097/FJC.0000000000001305
20. Moghaddam AS, Afshari JT, Esmaeili SA, et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1-9. DOI:10.1016/j.atherosclerosis.2019.03.016
________________________________________________
1. Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the diabetes register data as of 01.01.2021. Diabetes Mellitus. 2021;24(3):204-21 (in Russian). DOI:10.14341/DM12759
2. Shestakova MV, Vikulova OK, Isakov MA, Dedov II. Diabetes and COVID-19: analysis of the clinical outcomes according to the data of the Russian Diabetes Registry. Probl Endokrinol (Mosk). 2020;66(1):35-46 (in Russian). DOI:10.14341/probl12458
3. Baev MS, Ryzhkov AV, Gavrilova EA, Trufanov GE. Clinical application of T1 mapping of the myocardium: a review of the literature and the first experience of clinical application. The Siberian Journal of Clinical and Experimental Medicine. 2022;37(1):17-26 (in Russian). DOI:10.29001/2073-8552-2022-37-1-17-26
4. Reiter G, Reiter C, Kräuter C, et al. Cardiac magnetic resonance T1 mapping. Part 1: Aspects of acquisition and evaluation. Eur J Radiol. 2018;109:223-34. DOI:10.1016/j.ejrad.2018.10.011
5. Baker AR, Silva NF, Quinn DW, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1. DOI:10.1186/1475-2840-5-1
6. Mustafina IA, Ionin VA, Dolganov AA, et al. Role of epicardial fat tissue in the development of cardiovascular diseases. Russian Journal of Cardiology. 2022;27(1S):4872 (in Russian). DOI:10.15829/1560-4071-2022-4872
7. Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005;46(7):1369-79.
DOI:10.1194/jlr.M400373-JLR200
8. Malavazos AE, Di Leo G, Secchi F, et al. Relation of echocardiographic epicardial fat thickness and myocardial fat. Am J Cardiol. 2010;105(12):1831-5. DOI:10.1016/j.amjcard.2010.01.368
9. Bailey SD, Loredo-Osti JC, Lepage P, et al. Common polymorphisms in the promoter of the visfatin gene (PBEF1) influence plasma insulin levels in a French-Canadian population. Diabetes. 2006;55(10):2896‑902. DOI:10.2337/db06-0189
10. Moon B, Kwan JJ-M, Duddy N, et al. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol. Metab. 2003;285(1):E106-15. DOI:10.1152/ajpendo.00457.2002
11. Mahabadi AA, Massaro JM, Rosito GA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30(7):850-6. DOI:10.1093/eurheartj/ehn573
12. Ding J, Hsu FC, Harris TB, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90(3):499-504. DOI:10.3945/ajcn.2008.27358
13. Ambale-Venkatesh B, Armstrong AC, Liu CY, et al. Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2014;15(4):442-9. DOI:10.1093/ehjci/jet189
14. Bozkurt B, Coats AJ, Tsutsui H, et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021;S1071‑9164(21)00050-6. DOI:10.1016/j.cardfail.2021.01.022
15. Gareev IF, Beylerli OA. Circulating microRNAs as biomarkers: what are perspectives? Profilakticheskaya Meditsina. 2018;21(6):142‑50 (in Russian). DOI:10.17116/profmed201821061142
16. Nazari-Jahantigh M, Egea V, Schober A, Weber C. MicroRNA-specific regulatory mechanisms in atherosclerosis. J Mol Cell Cardiol. 2015;89(Pt. A):35-41. DOI:10.1016/j.yjmcc.2014.10.021
17. Zhang Y, Yuan B, Xu Y, et al. MiR-208b/miR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-β1/Smad-3 Signaling Pathway: An in vitro and in vivo Study. Front Cardiovasc Med. 2022;9:924629. DOI:10.3389/fcvm.2022.924629
18. Stonogina DA, Zhelankin AV, Akselrod AS, et al. Circulating microRNAs as biomarkers of the risk of cardiovascular complications in patients with coronary artery disease: achievements and difficulties in recent years. Cardiology and Cardiovascular Surgery. 2019;12(1):17‑24 (in Russian). DOI:10.17116/kardio20191201117
19. Sothivelr V, Hasan MY, Saffian SM, et al. Revisiting miRNA-21 as a Therapeutic Strategy for Myocardial Infarction: A Systematic Review. J Cardiovasc Pharmacol.
2022;80(3):393-406. DOI:10.1097/FJC.0000000000001305
20. Moghaddam AS, Afshari JT, Esmaeili SA, et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1-9. DOI:10.1016/j.atherosclerosis.2019.03.016
ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия
*vengrzhinovskay@gmail.com
________________________________________________
Oksana I. Vengrzhinovskaya*, Irina Z. Bondarenko, Olga A. Shatskaya, Natalia V. Tarbaeva, Anastasya Yu. Korneluk, Victor Yu. Kalashnikov, Marina V. Shestakova, Natalia G. Mokrysheva