Maltsev OV, Kasyanenko KV, Zhdanov KV, Malyshev NA, Kolomoets EV, Konomou VK. The experience in treatment of dengue fever using antiviral drug riamilovir in the Republic of Guinea (case report). Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(1):85–89. DOI: 10.26442/00403660.2023.01.202054
Опыт применения противовирусного препарата риамиловир у пациента с лихорадкой денге в Гвинейской Республике (клинический случай)
Мальцев О.В., Касьяненко К.В., Жданов К.В., Малышев Н.А., Коломоец Е.В., Коному В.К. Опыт применения противовирусного препарата риамиловир у пациента с лихорадкой денге в Гвинейской Республике (клинический случай). Терапевтический архив. 2023;95(1):85–89. DOI: 10.26442/00403660.2023.01.202054
Maltsev OV, Kasyanenko KV, Zhdanov KV, Malyshev NA, Kolomoets EV, Konomou VK. The experience in treatment of dengue fever using antiviral drug riamilovir in the Republic of Guinea (case report). Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(1):85–89. DOI: 10.26442/00403660.2023.01.202054
На сегодняшний день лихорадка денге отнесена к наиболее распространенным вирусным заболеваниям с трансмиссивным механизмом передачи, реализуемым посредством членистоногих переносчиков. Расширение ареала обитания комаров Aedes aegypti приводит к значительному увеличению числа случаев заболевания лихорадкой денге более чем в 100 странах мира, подчеркивая важность разработки и применения мер специфической профилактики и лечения. Этиотропных препаратов, обладающих доказанной эффективностью в отношении возбудителя, не зарегистрировано, а использование вакцины одобрено только среди серопозитивных лиц. В связи с этим основной терапевтической стратегией остается патогенетическое лечение, однако работа по синтезу противовирусных препаратов активно ведется. В связи с уникальностью функций неструктурных белков NS3 и NS5 в цикле репликации вируса именно они стали основными мишенями для исследования противовирусной активности ряда химиопрепаратов. Из указанных белков благодаря наиболее консервативной структуре перспективной целью для ингибирования является NS5, однако успехов в получении клинического эффекта при использовании ряда имеющихся противовирусных препаратов не получено. В настоящем исследовании описан положительный опыт применения нуклеозидного аналога риамиловира при лечении пациента с лихорадкой денге в Гвинейской Республике.
Dengue fever is classified as one of the most common viral diseases with a transmission mechanism implemented through arthropod vectors. The expansion of of the Aedes aegypti mosquito is leading to a significant increase in the number of cases of dengue fever in more than 100 countries, highlighting the importance of developing and implementing specific prevention and treatment measures. Etiotropic drugs with proven efficacy against the pathogen are not registered, and the use of the vaccine is approved only among seropositive individuals. In this regard, pathogenetic treatment remains the main therapeutic strategy, however, work on the synthesis of antiviral drugs is being actively carried out. Due to the unique functions of non-structural proteins NS3 and NS5 in the viral replication cycle, they have become the main targets for studying the antiviral activity of a number of chemotherapy drugs. Of these proteins, due to the most conserved structure, the NS5 protein is a promising target for inhibition, however, success in obtaining a clinical effect using a number of available antiviral drugs has not been reached. This study describes the positive experience of using the nucleoside analogue riamilovir in the treatment of a patient with dengue fever in the Republic of Guinea.
1. Kraemer MU, Sinka ME, Duda, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347. DOI:10.7554/eLife.08347
2. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. DOI:10.1038/nature12060
3. Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17(8):1349-54. DOI:10.3201/eid1708.101515
4. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223. DOI:10.1016/S0140-6736(12)61689-4
5. Messina JP, Brady OJ, Golding N, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508-15. DOI:10.1038/s41564-019-0476-8
6. Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India. 2015;71(1):67-70. DOI:10.1016/j.mjafi.2014.09.011
7. Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol. 2021;12:574411. DOI:10.3389/fimmu.2021.574411
8. Steuer C, Gege C, Fischl W, et al. Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg Med Chem. 2011;19(13):4067-74. DOI:10.1016/j.bmc.2011.05.015
9. Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res. 2015;118:148-58. DOI:10.1016/j.antiviral.2015.03.014
10. Zou G, Chen YL, Dong H, et al. Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem. 2011;286(16):14362-72. DOI:10.1074/jbc.M110.214189
11. Chang J, Schul W, Butters TD, et al. Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res. 2011;89(1):26-34. DOI:10.1016/j.antiviral.2010.11.002
12. Malinoski FJ, Hasty SE, Ussery MA, Dalrymple JM. Prophylactic ribavirin treatment of dengue type 1 infection in rhesus monkeys. Antiviral Res. 1990;13(3):139-49.
DOI:10.1016/0166-3542(90)90029-7
13. Yap TL, Xu T, Chen YL, et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol. 2007;81(9):4753-65. DOI:10.1128/JVI.02283-06
14. Malet H, Massé N, Selisko B, et al. The flavivirus polymerase as a target for drug discovery. Antiviral Res. 2008;80(1):23-35. DOI:10.1016/j.antiviral.2008.06.007
15. Lim SP, Noble CG, Nilar S, et al. Discovery of Potent Non-nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from Fragment Screening and Structure-Guided Design. Adv Exp Med Biol. 2018;1062:187-98. DOI:10.1007/978-981-10-8727-1_14
16. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447-64. DOI:10.1038/nrd4010
17. Eyer L, Nencka R, de Clercq E, et al. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother. 2018;26:2040206618761299. DOI:10.1177/2040206618761299
18. Benhamou Y, Tubiana R, Thibault V. Tenofovir disoproxil fumarate in patients with HIV and lamivudine-resistant hepatitis B virus. N Engl J Med. 2003;348(2):177-8. DOI:10.1056/NEJM200301093480218
19. Osorio JE, Wallace D, Stinchcomb DT. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev Vaccines. 2016;15(4):497-508. DOI:10.1586/14760584.2016.1128328
20. Whitehead SS. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine? Expert Rev Vaccines. 2016;15(4):509-17. DOI:10.1586/14760584.2016.1115727
21. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447-64. DOI:10.1038/nrd4010
________________________________________________
1. Kraemer MU, Sinka ME, Duda, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347. DOI:10.7554/eLife.08347
2. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. DOI:10.1038/nature12060
3. Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17(8):1349-54. DOI:10.3201/eid1708.101515
4. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223. DOI:10.1016/S0140-6736(12)61689-4
5. Messina JP, Brady OJ, Golding N, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508-15. DOI:10.1038/s41564-019-0476-8
6. Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India. 2015;71(1):67-70. DOI:10.1016/j.mjafi.2014.09.011
7. Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol. 2021;12:574411. DOI:10.3389/fimmu.2021.574411
8. Steuer C, Gege C, Fischl W, et al. Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg Med Chem. 2011;19(13):4067-74. DOI:10.1016/j.bmc.2011.05.015
9. Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res. 2015;118:148-58. DOI:10.1016/j.antiviral.2015.03.014
10. Zou G, Chen YL, Dong H, et al. Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem. 2011;286(16):14362-72. DOI:10.1074/jbc.M110.214189
11. Chang J, Schul W, Butters TD, et al. Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res. 2011;89(1):26-34. DOI:10.1016/j.antiviral.2010.11.002
12. Malinoski FJ, Hasty SE, Ussery MA, Dalrymple JM. Prophylactic ribavirin treatment of dengue type 1 infection in rhesus monkeys. Antiviral Res. 1990;13(3):139-49.
DOI:10.1016/0166-3542(90)90029-7
13. Yap TL, Xu T, Chen YL, et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol. 2007;81(9):4753-65. DOI:10.1128/JVI.02283-06
14. Malet H, Massé N, Selisko B, et al. The flavivirus polymerase as a target for drug discovery. Antiviral Res. 2008;80(1):23-35. DOI:10.1016/j.antiviral.2008.06.007
15. Lim SP, Noble CG, Nilar S, et al. Discovery of Potent Non-nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from Fragment Screening and Structure-Guided Design. Adv Exp Med Biol. 2018;1062:187-98. DOI:10.1007/978-981-10-8727-1_14
16. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447-64. DOI:10.1038/nrd4010
17. Eyer L, Nencka R, de Clercq E, et al. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother. 2018;26:2040206618761299. DOI:10.1177/2040206618761299
18. Benhamou Y, Tubiana R, Thibault V. Tenofovir disoproxil fumarate in patients with HIV and lamivudine-resistant hepatitis B virus. N Engl J Med. 2003;348(2):177-8. DOI:10.1056/NEJM200301093480218
19. Osorio JE, Wallace D, Stinchcomb DT. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev Vaccines. 2016;15(4):497-508. DOI:10.1586/14760584.2016.1128328
20. Whitehead SS. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine? Expert Rev Vaccines. 2016;15(4):509-17. DOI:10.1586/14760584.2016.1115727
21. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447-64. DOI:10.1038/nrd4010
1 ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Минобороны России, Санкт-Петербург, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского» Минздрава России, Москва, Россия;
3 ОК «РУСАЛ», Конакри, Гвинейская Республика
*dr.snegur@gmail.com
________________________________________________
Oleg V. Maltsev1, Kristina V. Kasyanenko*1, Konstantin V. Zhdanov1, Nikolay A. Malyshev2, Elena V. Kolomoets3, Victor K. Konomou3
1 Kirov Military Medical Academy, Saint Petersburg, Russia;
2 Vishnevsky National Medical Research Center of Surgery, Moscow, Russia;
3 UC “RUSAL”, Conakry, Republic of Guinea
*dr.snegur@gmail.com