Цель. Определить динамику симптомов, функции легких, последующих обострений хронической обструктивной болезни легких (ХОБЛ) в течение года после обострений, ассоциированных с вирусной инфекцией. Материалы и методы. В одноцентровое проспективное наблюдательное исследование включены больные, госпитализированные с вирус-ассоциированными (n=60), бактериальными (n=60) и вирусно-бактериальными обострениями (n=60) ХОБЛ. Диагноз ХОБЛ – спирографический критерий. Вирусную этиологию устанавливали при выявлении в лаважной жидкости/мокроте методом полимеразной цепной реакции с обратной транскрипцией в режиме реального времени РНК вирусов гриппа А и В, риновируса, респираторно-синцитиального вируса, SARS-CoV-2. Оценивали симптомы, функцию легких, обострения ХОБЛ. Обследование проводили на момент госпитализации, через 4 и 52 нед после выписки. Результаты. Через 52 нед в группе перенесших вирус-ассоциированные и вирусно-бактериальные обострения наблюдали наибольшую скорость снижения объема форсированного выдоха за 1-ю секунду – 71 (68; 73) мл/год и 69 (67; 72) мл/год в сравнении с 59 (55; 62) мл/год у перенесших бактериальные обострения, низкие значения диффузионной способности легких (DLco/Va) – 52,5% (45,1%; 55,8%), 50,2% (44,9%; 56,0%) и 75,3% (72,2%; 80,1%) соответственно, дистанции теста 6-минутной ходьбы, p<0,01 по отношению к группе бактериальных обострений. Методом пропорциональных рисков Кокса установлено, что вирус-ассоциированные и вирусно-бактериальные обострения увеличивают вероятность последующих обострений в течение года в 2,4 раза независимо от исходной частоты обострений и объема форсированного выдоха за 1-ю секунду. Линейной регрессией определены взаимосвязи с обструктивными нарушениями респираторно-синцитиального вируса, риновируса, гриппа, с нарушением диффузионной способности – риновирусов, гриппа и SARS-CoV-2. Заключение. После вирус-ассоциированных обострений ХОБЛ характеризуется прогрессированием бронхообструкции, снижением DLco дистанции теста 6-минутной ходьбы, риском последующих обострений.
Aim. To establish symptoms, lung function and to evaluate subsequent exacerbations of chronic obstructive pulmonary disease (COPD) during a year after virus-induced COPD exacerbations. Materials and methods. Patients hospitalized with viral (n=60), bacterial (n=60) and viral-bacterial (n=60) COPD exacerbations were enrolled to single-center prospective observational study. COPD was diagnosed according spirography criteria. Viral infection was established in bronchoalveolar lavage fluid or sputum by real-time reverse transcription-polymerase chain reaction for RNA of influenza A and B virus, rhinovirus, respiratory syncytial virus and SARS-CoV-2. Symptoms, lung function, COPD exacerbations were assessed. Patients were investigated at the hospitalization onset and then 4 and 52 weeks following the discharge from the hospital. Results. After 52 weeks in viral and viral-bacterial COPD exacerbations groups the rate of forced expiratory volume in one second (FEV1) decline were maximal – 71 (68; 73) ml/year and 69 (67; 72) ml/year versus 59 (55; 62) ml/year after bacterial exacerbations. Low levels of diffusion lung capacity for carbon monoxide (DLco/Va) – 52.5% (45.1%; 55.8%), 50.2% (44.9%; 56.0%) and 75.3% (72.2%; 80.1%) respectively, of 6-minute walk distance; p<0.001 in relation to bacterial exacerbations. In Cox proportional hazards regression analyses viral and viral-bacterial exacerbations were associated with increased risk of subsequent COPD exacerbations by 2.4 times independent of exacerbations rate before index event and FEV1. In linear regression models the relationships between airflow limitation and respiratory syncytial virus, rhinovirus and influenza virus infection, between low DLco/Va and rhinovirus, influenza virus and SARS-CoV-2 infection. Conclusion. COPD after virus-induced exacerbations were characterized by progression of airflow limitation, low DLco/Va, low 6-minute walking test distance, subsequent COPD exacerbations risk.
1. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., и др. Хроническая обструктивная болезнь легких: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022;32(3):356-92 [Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of chronic obstructive pulmonary disease. Pulmonologiya. 2022;32(3):356-92 (in Russian)]. DOI:10.18093/0869-0189-2022-32-3-356-392
2. Institute for Health Metrics and Evaluation. GBD Compare | Viz Hub. Available at: https://vizhub.healthdata.org/gbd-compare/ Accessed: 10.01.2022.
3. Wu JJ, Xu HR, Zhang YX, et al. The characteristics of the frequent exacerbator with chronic bronchitis phenotype and non-exacerbator phenotype in patients with chronic obstructive pulmonary disease: a meta-analysis and system review. BMC Pulm Med. 2020;20(1):103. DOI:10.1186/s12890-020-1126-x
4. Гайгольник Т.В., Демко И.В., Бочанова Е.Н., и др. Фармакоэкономическая оценка терапии обострения хронической обструктивной болезни легких в крупном стационаре Красноярска. Пульмонология. 2015;25(3):320-6 [Gaygol'nik TV, Demko IV, Bochanova EN, et al. Pharmacoeconomic analysis of therapy of acute exacerbation of chronic obstructive pulmonary disease in a large Krasnoyarsk hospital. Pulmonologiya. 2015;25(3):320-6 (in Russian)]. DOI:10.18093/0869-0189-2015-25-3-320-326
5. Зыков К.А., Овчаренко С.И., Авдеев С.Н., и др. Фенотипические характеристики пациентов с хронической обструктивной болезнью легких, имеющих стаж курения, в Российской Федерации: данные исследования POPE-study. Пульмонология. 2020;30(1):42-52 [Zykov KA, Ovcharenko SI, Avdeev SN, et al. Phenotypic characteristics of COPD patients with a smoking history in POPE-study in the Russian Federation. Pulmonologiya. 2020;30(1):42-52 (in Russian)]. DOI:10.18093/0869-0189-2020-30-1-42-52
6. Suissa S, Dell'Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax. 2012;67(11):957-63. DOI:10.1136/thoraxjnl-2011-201518
7. Sadatsafavi M, McCormack J, Petkau J, et al. Should the number of acute exacerbations in the previous year be used to guide treatments in COPD? Eur Respir J. 2021;57(2):2002122. DOI:10.1183/13993003.02122-2020
8. Jafarinejad H, Moghoofei M, Mostafaei S, et al. Worldwide prevalence of viral infection in AECOPD patients: A meta-analysis. Microb Pathog. 2017;113:190-6. DOI:10.1016/j.micpath.2017.10.021
9. Jones PW, Harding G, Berry P, et al. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648-54. DOI:10.1183/09031936.00102509
10. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428-46. DOI:10.1183/09031936.00150314
11. Чучалин А.Г., Айсанов З.Р., Чикина С.Ю., и др. Федеральные клинические рекомендации Российского респираторного общества по использованию метода спирометрии. Пульмонология. 2014;6:11-24 [Chuchalin AG, Aysanov ZR, Chikina SYu, et al. Federal guidelines of Russian Respiratory Society on spirometry. Pulmonologiya. 2014;6:11-24 (in Russian)]. DOI:10.18093/0869-0189-2014-0-6-11-24
12. Graham BL, Brusasco V, Burgos F, et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49(1):1600016. DOI:10.1183/13993003.00016-2016
13. D'Anna SE, Maniscalco M, Cappello F, et al. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med. 2021;53(1):135-50. DOI:10.1080/07853890.2020.1831050
14. Marott JL, Çolak Y, Ingebrigtsen TS, et al. Exacerbation history, severity of dyspnoea and maintenance treatment predicts risk of future exacerbations in patients with COPD in the general population. Respir Med. 2021;192:106725. DOI:10.1016/j.rmed.2021.106725
15. Авдеев С.Н., Трушенко Н.В., Мержоева З.М., и др. Эозинофильное воспаление при хронической обструктивной болезни легких. Терапевтический архив. 2019;91(10):144-52 [Avdeev SN, Trushenko NV, Merzhoeva ZM, et al. Eosinophilic inflammation in chronic obstructive pulmonary disease. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(10):144-52 (in Russian)]. DOI:10.26442/00403660.2019.10.000426
________________________________________________
1. Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of chronic obstructive pulmonary disease. Pulmonologiya. 2022;32(3):356-92 (in Russian). DOI:10.18093/0869-0189-2022-32-3-356-392
2. Institute for Health Metrics and Evaluation. GBD Compare | Viz Hub. Available at: https://vizhub.healthdata.org/gbd-compare/ Accessed: 10.01.2022.
3. Wu JJ, Xu HR, Zhang YX, et al. The characteristics of the frequent exacerbator with chronic bronchitis phenotype and non-exacerbator phenotype in patients with chronic obstructive pulmonary disease: a meta-analysis and system review. BMC Pulm Med. 2020;20(1):103. DOI:10.1186/s12890-020-1126-x
4. Gaygol'nik TV, Demko IV, Bochanova EN, et al. Pharmacoeconomic analysis of therapy of acute exacerbation of chronic obstructive pulmonary disease in a large Krasnoyarsk hospital. Pulmonologiya. 2015;25(3):320-6 (in Russian). DOI:10.18093/0869-0189-2015-25-3-320-326
5. Zykov KA, Ovcharenko SI, Avdeev SN, et al. Phenotypic characteristics of COPD patients with a smoking history in POPE-study in the Russian Federation. Pulmonologiya. 2020;30(1):42-52 (in Russian). DOI:10.18093/0869-0189-2020-30-1-42-52
6. Suissa S, Dell'Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax. 2012;67(11):957-63. DOI:10.1136/thoraxjnl-2011-201518
7. Sadatsafavi M, McCormack J, Petkau J, et al. Should the number of acute exacerbations in the previous year be used to guide treatments in COPD? Eur Respir J. 2021;57(2):2002122. DOI:10.1183/13993003.02122-2020
8. Jafarinejad H, Moghoofei M, Mostafaei S, et al. Worldwide prevalence of viral infection in AECOPD patients: A meta-analysis. Microb Pathog. 2017;113:190-6. DOI:10.1016/j.micpath.2017.10.021
9. Jones PW, Harding G, Berry P, et al. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648-54. DOI:10.1183/09031936.00102509
10. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428-46. DOI:10.1183/09031936.00150314
11. Chuchalin AG, Aysanov ZR, Chikina SYu, et al. Federal guidelines of Russian Respiratory Society on spirometry. Pulmonologiya. 2014;6:11-24 (in Russian).
DOI:10.18093/0869-0189-2014-0-6-11-24
12. Graham BL, Brusasco V, Burgos F, et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49(1):1600016. DOI:10.1183/13993003.00016-2016
13. D'Anna SE, Maniscalco M, Cappello F, et al. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med. 2021;53(1):135-50. DOI:10.1080/07853890.2020.1831050
14. Marott JL, Çolak Y, Ingebrigtsen TS, et al. Exacerbation history, severity of dyspnoea and maintenance treatment predicts risk of future exacerbations in patients with COPD in the general population. Respir Med. 2021;192:106725. DOI:10.1016/j.rmed.2021.106725
15. Avdeev SN, Trushenko NV, Merzhoeva ZM, et al. Eosinophilic inflammation in chronic obstructive pulmonary disease. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(10):144-52 (in Russian). DOI:10.26442/00403660.2019.10.000426
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Новосибирск, Россия
*ok526@yandex.ru
________________________________________________
Lyubov A. Shpagina, Olga S. Kotova*, Ilya S. Shpagin, Svetlana A. Karmanovskaya, Evgenij M. Loktin, Anastasiya A. Rukavitsyna, Galina V. Kuznetsova, Dmitriy A. Gerasimenko, Ekaterina V. Anikina
Novosibirsk State Medical University, Novosibirsk, Russia
*ok526@yandex.ru