Прогрессирующий фиброз (ПФ) легких – важнейшая проблема в респираторной медицине. В настоящее время надежные биомаркеры для ранней диагностики ПФ легких отсутствуют, что приводит к несвоевременной диагностике. Цель работы. Определить роль сывороточных биомаркеров СА-19-9 и СА-125 и возможности капилляроскопии ногтевого валика в диагностике прогрессирующего легочного фиброза. Материалы и методы. В исследование включены 43 пациента с интерстициальными изменениями в легких. На основании наличия/отсутствия признаков прогрессирования за предшествующие 12 мес пациенты разделены на 2 группы. Всем пациентам выполнялись форсированная спирометрия, бодиплетизмография, диффузионный тест, компьютерная томография органов грудной клетки, ультразвуковое исследование легких, капилляроскопия ногтевого валика, исследование сывороточной концентрации СА-19-9 и СА-125. Результаты. В группе пациентов с прогрессирующим фибротическим фенотипом интерстициальных заболеваний легких (ИЗЛ) выявлены большая выраженность капилляроскопических изменений и более высокий уровень СА-19-9. Показана корреляция этих параметров с изменениями по данным компьютерной томографии органов грудной клетки (Warrick-тест) и ультразвукового исследования легких. Заключение. Полученные данные демонстрируют возможности неинвазивной диагностики ПФ-ИЗЛ и требуют дальнейших исследований и проспективного наблюдения для оценки диагностической и прогностической роли исследуемых биомаркеров, а также определения их места в клинической практике.
Progressive pulmonary fibrosis is a major problem in respiratory medicine. Currently, there are no reliable biomarkers for early diagnosis of progressive pulmonary fibrosis, which leads to delayed diagnosis. Aim. To determine the role of serum biomarkers CA-19-9 and CA-125 and the possibilities of capillaroscopy of the nail fold in the diagnosis of progressive pulmonary fibrosis. Materials and methods. The study included 43 patients with interstitial changes in the lungs. Based on the presence/absence of signs of progression over the previous 12 months, patients were divided into 2 groups. All patients underwent forced spirometry, body plethysmography, diffusion test, CT, lung ultrasound, capillaroscopy of the nail fold, study of serum concentrations of CA-19-9 and CA-125. Results. In the group of patients with a progressive fibrotic phenotype of Interstitial lung diseases, a greater severity of capillaroscopic changes and a higher level of CA-19-9 were revealed. Correlation of these parameters with changes according to CT scan data (Warrick test) and lung ultrasound was shown. Conclusion. The data obtained demonstrate the possibilities of non-invasive diagnosis of progressive fibrosing interstitial lung diseases and require further research and prospective follow-up to assess the diagnostic and prognostic role of the studied biomarkers, as well as to determine their place in clinical practice.
1. Wijsenbeek M, Cottin V. Spectrum of Fibrotic Lung Diseases. N Engl J Med. 2020;383(10):958-68. DOI:10.1056/NEJMra2005230
2. Wild JM, Porter JC, Molyneaux PL, et al. Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID). BMJ Open Respir Res. 2021;8(1):e001049. DOI:10.1136/bmjresp-2021-001049
3. Valenzuela C, Waterer G, Raghu G. Interstitial lung disease before and after COVID-19: a double threat? Eur Respir J. 2021;58(6):2101956. DOI:10.1183/13993003.01956-2021
4. Hilberg O, Hoffmann-Vold AM, Smith V, et al. Epidemiology of interstitial lung diseases and their progressive-fibrosing behaviour in six European countries. ERJ Open Res. 2022;8(1):00597-2021. DOI:10.1183/23120541.00597-2021
5. Gagliardi M, Berg DV, Heylen CE, et al. Real-life prevalence of progressive fibrosing interstitial lung diseases. Sci Rep. 2021;11(1):23988. DOI:10.1038/s41598-021-03481-8
6. Dhooria S, Sehgal IS, Agarwal R, et al. Incidence, prevalence, and national burden of interstitial lung diseases in India: Estimates fr om two studies of 3089 subjects. PLoS One. 2022;17(7):e0271665. DOI:10.1371/journal.pone.0271665
7. Hoffmann-Vold AM, Allanore Y, Alves M, et al; EUSTAR collaborators. Progressive interstitial lung disease in patients with systemic sclerosis-associated interstitial lung disease in the EUSTAR database. Ann Rheum Dis. 2021;80(2):219-27. DOI:10.1136/annrheumdis-2020-217455
8. Lorent N, Vande Weygaerde Y, Claeys E, et al. Prospective longitudinal evaluation of hospitalised COVID-19 survivors 3 and 12 months after discharge. ERJ Open Res. 2022;8(2):00004-2022. DOI:10.1183/23120541.00004-2022
9. John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev. 2021;302(1):228-40. DOI:10.1111/imr.12977
10. Udwadia ZF, Koul PA, Richeldi L. Post-COVID lung fibrosis: The tsunami that will follow the earthquake. Lung India. 2021;38(Suppl.):S41-7. DOI:10.4103/lungindia.lungindia_818_20
11. Allen RJ, Guillen-Guio B, Croot E, et al. Genetic overlap between idiopathic pulmonary fibrosis and COVID-19. Eur Respir J. 2022;60(1):2103132. DOI:10.1183/13993003.03132-2021
12. Dhooria S, Maturu VN, Talwar D, et al. A multicenter survey study of antifibrotic use for symptomatic patients with post-COVID-19 interstitial lung abnormalities. Lung India. 2022;39(3):254-60. DOI:10.4103/lungindia.lungindia_568_21
13. Al-Kuraishy HM, Batiha GE, Faidah H, et al. Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology. 2022;30(6):2017-26. DOI:10.1007/s10787-022-01027-6
14. Raghu G, Remy-Jardin M, Richeldi L, et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18-47. DOI:10.1164/rccm.202202-0399ST
15. Zhong D, Wu C, Bai J, et al. Comparative diagnostic efficacy of serum Krebs von den Lungen-6 and surfactant D for connective tissue disease-associated interstitial lung diseases: A meta-analysis. Medicine (Baltimore). 2020;99(16):e19695. DOI:10.1097/MD.0000000000019695
16. Elhai M, Avouac J, Allanore Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Wh ere do we stand? Semin Arthritis Rheum. 2020;50(3):480-91. DOI:10.1016/j.semarthrit.2020.01.006
17. Barratt SL, Creamer AW, Adamali HI, et al. Use of peripheral neutrophil to lymphocyte ratio and peripheral monocyte levels to predict survival in fibrotic hypersensitivity pneumonitis (fHP): a multicentre retrospective cohort study. BMJ Open Respir Res. 2021;8(1):e001063. DOI:10.1136/bmjresp-2021-001063
18. Achaiah A, Rathnapala A, Pereira A, et al. Monocyte and neutrophil levels are potentially linked to progression to IPF for patients with indeterminate UIP CT pattern. BMJ Open Respir Res. 2021;8(1):e000899. DOI:10.1136/bmjresp-2021-000899
19. Tomassetti S, Poletti V, Ravaglia C, et al. Incidental discovery of interstitial lung disease: diagnostic approach, surveillance and perspectives. Eur Respir Rev. 2022;31(164):210206. DOI:10.1183/16000617.0206-2021
20. Trappe A, Donnelly SC, McNally P, Coppinger JA. Role of extracellular vesicles in chronic lung disease. Thorax. 2021;76(10):1047-56. DOI:10.1136/thoraxjnl-2020-216370
21. Maher TM, Oballa E, Simpson JK, et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir Med. 2017;5(12):946-55. DOI:10.1016/S2213-2600(17)30430-7
22. Yanagihara T, Jones KD. Demystifying morphomolecular alterations of vasculature in interstitial lung diseases. Eur Respir J. 2020;55(3):1902446.
DOI:10.1183/13993003.02446-2019
23. Ackermann M, Stark H, Neubert L, et al. Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J. 2020;55(3):1900933. DOI:10.1183/13993003.00933-2019
24. Chung JH, Adegunsoye A, Cannon B, et al. Differentiation of Idiopathic Pulmonary Fibrosis from Connective Tissue Disease-Related Interstitial Lung Disease Using Quantitative Imaging. J Clin Med. 2021;10(12):2663. DOI:10.3390/jcm10122663
25. Smith V, Thevissen K, Trombetta AC, et al; EULAR Study Group on Microcirculation in Rheumatic Diseases. Nailfold Capillaroscopy and Clinical Applications in Systemic Sclerosis. Microcirculation. 2016;23(5):364-72. DOI:10.1111/micc.12281
26. Ruaro B, Confalonieri M, Salton F, et al. The Relationship between Pulmonary Damage and Peripheral Vascular Manifestations in Systemic Sclerosis Patients. Pharmaceuticals (Basel). 2021;14(5):403. DOI:10.3390/ph14050403
27. Buda N, Piskunowicz M, Porzezińska M, et al. Lung Ultrasonography in the Evaluation of Interstitial Lung Disease in Systemic Connective Tissue Diseases: Criteria and Severity of Pulmonary Fibrosis – Analysis of 52 Patients. Ultraschall Med. 2016;37(4):379-85. DOI:10.1055/s-0041-110590
28. Shumar JN, Chandel A, King CS. Antifibrotic Therapies and Progressive Fibrosing Interstitial Lung Disease (PF-ILD): Building on INBUILD. J Clin Med. 2021;10(11):2285. DOI:10.3390/jcm10112285
29. Mori Y, Kondoh Y. What parameters can be used to identify early idiopathic pulmonary fibrosis? Respir Investig. 2021;59(1):53-65. DOI:10.1016/j.resinv.2020.10.008
30. Sugino K, Ono H, Watanabe N, et al. Efficacy of early antifibrotic treatment for idiopathic pulmonary fibrosis. BMC Pulm Med. 2021;21(1):218. DOI:10.1186/s12890-021-01595-3
31. Warrick JH, Bhalla M, Schabel SI, Silver RM. High resolution computed tomography in early scleroderma lung disease. J Rheumatol. 1991;18(10):1520-8
________________________________________________
1. Wijsenbeek M, Cottin V. Spectrum of Fibrotic Lung Diseases. N Engl J Med. 2020;383(10):958-68. DOI:10.1056/NEJMra2005230
2. Wild JM, Porter JC, Molyneaux PL, et al. Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID). BMJ Open Respir Res. 2021;8(1):e001049. DOI:10.1136/bmjresp-2021-001049
3. Valenzuela C, Waterer G, Raghu G. Interstitial lung disease before and after COVID-19: a double threat? Eur Respir J. 2021;58(6):2101956. DOI:10.1183/13993003.01956-2021
4. Hilberg O, Hoffmann-Vold AM, Smith V, et al. Epidemiology of interstitial lung diseases and their progressive-fibrosing behaviour in six European countries. ERJ Open Res. 2022;8(1):00597-2021. DOI:10.1183/23120541.00597-2021
5. Gagliardi M, Berg DV, Heylen CE, et al. Real-life prevalence of progressive fibrosing interstitial lung diseases. Sci Rep. 2021;11(1):23988. DOI:10.1038/s41598-021-03481-8
6. Dhooria S, Sehgal IS, Agarwal R, et al. Incidence, prevalence, and national burden of interstitial lung diseases in India: Estimates fr om two studies of 3089 subjects. PLoS One. 2022;17(7):e0271665. DOI:10.1371/journal.pone.0271665
7. Hoffmann-Vold AM, Allanore Y, Alves M, et al; EUSTAR collaborators. Progressive interstitial lung disease in patients with systemic sclerosis-associated interstitial lung disease in the EUSTAR database. Ann Rheum Dis. 2021;80(2):219-27. DOI:10.1136/annrheumdis-2020-217455
8. Lorent N, Vande Weygaerde Y, Claeys E, et al. Prospective longitudinal evaluation of hospitalised COVID-19 survivors 3 and 12 months after discharge. ERJ Open Res. 2022;8(2):00004-2022. DOI:10.1183/23120541.00004-2022
9. John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev. 2021;302(1):228-40. DOI:10.1111/imr.12977
10. Udwadia ZF, Koul PA, Richeldi L. Post-COVID lung fibrosis: The tsunami that will follow the earthquake. Lung India. 2021;38(Suppl.):S41-7. DOI:10.4103/lungindia.lungindia_818_20
11. Allen RJ, Guillen-Guio B, Croot E, et al. Genetic overlap between idiopathic pulmonary fibrosis and COVID-19. Eur Respir J. 2022;60(1):2103132. DOI:10.1183/13993003.03132-2021
12. Dhooria S, Maturu VN, Talwar D, et al. A multicenter survey study of antifibrotic use for symptomatic patients with post-COVID-19 interstitial lung abnormalities. Lung India. 2022;39(3):254-60. DOI:10.4103/lungindia.lungindia_568_21
13. Al-Kuraishy HM, Batiha GE, Faidah H, et al. Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology. 2022;30(6):2017-26. DOI:10.1007/s10787-022-01027-6
14. Raghu G, Remy-Jardin M, Richeldi L, et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18-47. DOI:10.1164/rccm.202202-0399ST
15. Zhong D, Wu C, Bai J, et al. Comparative diagnostic efficacy of serum Krebs von den Lungen-6 and surfactant D for connective tissue disease-associated interstitial lung diseases: A meta-analysis. Medicine (Baltimore). 2020;99(16):e19695. DOI:10.1097/MD.0000000000019695
16. Elhai M, Avouac J, Allanore Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Wh ere do we stand? Semin Arthritis Rheum. 2020;50(3):480-91. DOI:10.1016/j.semarthrit.2020.01.006
17. Barratt SL, Creamer AW, Adamali HI, et al. Use of peripheral neutrophil to lymphocyte ratio and peripheral monocyte levels to predict survival in fibrotic hypersensitivity pneumonitis (fHP): a multicentre retrospective cohort study. BMJ Open Respir Res. 2021;8(1):e001063. DOI:10.1136/bmjresp-2021-001063
18. Achaiah A, Rathnapala A, Pereira A, et al. Monocyte and neutrophil levels are potentially linked to progression to IPF for patients with indeterminate UIP CT pattern. BMJ Open Respir Res. 2021;8(1):e000899. DOI:10.1136/bmjresp-2021-000899
19. Tomassetti S, Poletti V, Ravaglia C, et al. Incidental discovery of interstitial lung disease: diagnostic approach, surveillance and perspectives. Eur Respir Rev. 2022;31(164):210206. DOI:10.1183/16000617.0206-2021
20. Trappe A, Donnelly SC, McNally P, Coppinger JA. Role of extracellular vesicles in chronic lung disease. Thorax. 2021;76(10):1047-56. DOI:10.1136/thoraxjnl-2020-216370
21. Maher TM, Oballa E, Simpson JK, et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir Med. 2017;5(12):946-55. DOI:10.1016/S2213-2600(17)30430-7
22. Yanagihara T, Jones KD. Demystifying morphomolecular alterations of vasculature in interstitial lung diseases. Eur Respir J. 2020;55(3):1902446.
DOI:10.1183/13993003.02446-2019
23. Ackermann M, Stark H, Neubert L, et al. Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J. 2020;55(3):1900933. DOI:10.1183/13993003.00933-2019
24. Chung JH, Adegunsoye A, Cannon B, et al. Differentiation of Idiopathic Pulmonary Fibrosis from Connective Tissue Disease-Related Interstitial Lung Disease Using Quantitative Imaging. J Clin Med. 2021;10(12):2663. DOI:10.3390/jcm10122663
25. Smith V, Thevissen K, Trombetta AC, et al; EULAR Study Group on Microcirculation in Rheumatic Diseases. Nailfold Capillaroscopy and Clinical Applications in Systemic Sclerosis. Microcirculation. 2016;23(5):364-72. DOI:10.1111/micc.12281
26. Ruaro B, Confalonieri M, Salton F, et al. The Relationship between Pulmonary Damage and Peripheral Vascular Manifestations in Systemic Sclerosis Patients. Pharmaceuticals (Basel). 2021;14(5):403. DOI:10.3390/ph14050403
27. Buda N, Piskunowicz M, Porzezińska M, et al. Lung Ultrasonography in the Evaluation of Interstitial Lung Disease in Systemic Connective Tissue Diseases: Criteria and Severity of Pulmonary Fibrosis – Analysis of 52 Patients. Ultraschall Med. 2016;37(4):379-85. DOI:10.1055/s-0041-110590
28. Shumar JN, Chandel A, King CS. Antifibrotic Therapies and Progressive Fibrosing Interstitial Lung Disease (PF-ILD): Building on INBUILD. J Clin Med. 2021;10(11):2285. DOI:10.3390/jcm10112285
29. Mori Y, Kondoh Y. What parameters can be used to identify early idiopathic pulmonary fibrosis? Respir Investig. 2021;59(1):53-65. DOI:10.1016/j.resinv.2020.10.008
30. Sugino K, Ono H, Watanabe N, et al. Efficacy of early antifibrotic treatment for idiopathic pulmonary fibrosis. BMC Pulm Med. 2021;21(1):218. DOI:10.1186/s12890-021-01595-3
31. Warrick JH, Bhalla M, Schabel SI, Silver RM. High resolution computed tomography in early scleroderma lung disease. J Rheumatol. 1991;18(10):1520-8