В статье описаны основные методы определения степени значимости стенозирующего поражения коронарных артерий, их применимость в клинической практике и будущие перспективы. Обсуждены новые методы диагностики, которые на данный момент находятся в стадии научной разработки и представляют клинический интерес при дальнейшем использовании.
The article describes the main methods of assessment of physiological significance of coronary artery stenoses, their use in clinical practice and future perspectives. New diagnostic methods that are currently under research are discussed.
1. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020;41(3):407-7. DOI:10.1093/eurheartj/ehz425
2. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. DOI:10.1093/eurheartj/ehy394
3. Groepenhoff F, Klaassen RGM, Valstar GB, et al. Evaluation of non-invasive imaging parameters in coronary microvascular disease: a systematic review. BMC Med Imaging. 2021;21(5). DOI:10.1186/s12880-020-00535-7
4. Hwang D, Yang S, Zhang J, Koo BK. Physiologic Assessment after Coronary Stent Implantation. Korean Circ J. 2021;51(3):189-201. DOI:10.4070/kcj.2020.0548
5. Миронов В.М., Меркулов Е.В., Самко А.Н. Оценка фракционного резерва кровотока. Кардиология. 2012;8(52):66-71 [Mironov VM, Merkulov EV, Samko AN. Assessment of Fractional Coronary Blood Flow Reserve. Kardiologiia. 2012;8(52):66-71 (in Russian)].
6. Kim YH, Ahn JM, Park DW, et al. Impact of ischemia-guided revascularization with myocardial perfusion imaging for patients with multivessel coronary disease. J Am Coll Cardiol. 2012;60(3):181-90. DOI:10.1016/j.jacc.2012.02.061
7. Toma M, Buller CE, Westerhout CM, et al. Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J. 2010;31:1701-7. DOI:10.1093/eurheartj/ehq129
8. Hassanin A, Brener SJ, Lansky AJ, et al. Prognostic impact of multivessel versus culprit vessel only percutaneous intervention for patients with multivessel coronary artery disease presenting with acute coronary syndrome. EuroIntervention. 2015;11:293-300. DOI:10.4244/EIJY14M08_05
9. Smits PC, Abdel-Wahab M, Neumann FJ, et al. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376:1234-44. DOI:10.1056/NEJMoa1701067
10. Engstrom T, Kelbaek H, Helqvist S, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386:665-71. DOI:10.1016/s0140-6736(15)60648-1
11. Escaned J, Ryan N, Mejia-Renteria H, et al. Safety of the deferral of coronary revascularization on the basis of instantaneous wave-free ratio and fractional flow reserve measurements in stable coronary artery disease and acute coronary syndromes. J Am Coll Cardiol Intv. 2018;11:1437-49. DOI:10.1016/j.jcin.2018.05.029
12. Hakeem A, Edupuganti MM, Almomani A, et al. Long-term prognosis of deferred acute coronary syndrome lesions based on nonischemic fractional flow reserve. J Am Coll Cardiol. 2016;68:1181-91. DOI:10.1016/j.jacc.2016.06.035
13. Cerrato E, Mejía-Rentería H, Dehbi HM, et al. Revascularization deferral of nonculprit stenoses on the basis of fractional flow reserve: 1-year outcomes of 8,579 patients. J Am Coll Cardiol Intv. 2020;13:1894-903. DOI:10.1016/j.jcin.2020.05.024
14. Leipsic J, Abbara S, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2014;8(5):342-58. DOI:10.1016/j.jcct.2014.07.003
15. Wu Z, He Y, Li W, Cheng S. Computed tomography coronary angiography vs. standard diagnostic procedure for the diagnosis of angina due to coronary heart disease: A cross-sectional study. Exp Ther Med. 2019;17(4):2485-94. DOI:10.3892/etm.2019.7229
16. Eltabbakh AR, Dawoud MA, Langer M, et al. ‘Triple-rule-out’ CT angiography for clinical decision making and early triage of acute chest pain patients: use of 320-multislice CT angiography. Egypt J Radiol Nucl Med. 2019;50:3. DOI:10.1186/s43055-019-0003-1
17. Koo HJ, Yang DH, Kim YH, et al. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int J Cardiovasc Imaging. 2016;32:1-19. DOI:10.1007/s10554-015-0825-5
18. Takx RA, Blomberg BA, El Aidi H, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional-flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1):e002666. DOI:10.1161/circimaging.114.002666
19. Newhouse JH, Murphy RX Jr. Tissue distribution of soluble contrast: effect of dose variation and changes with time. AJR Am J Roentgenol. 1981;136(3):463-7. DOI:10.2214/ajr.136.3.463
20. Yang DH, Kim YH. CT myocardial perfusion imaging: current status and future perspectives. Int J Cardiovasc Imaging. 2017;33:1009-20. DOI:10.1007/s10554-017-1102-6
21. Yun CH, Hung CL, Wen MS, et al. CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments. Korean J Radiol. 2021;22(11):1749-63. DOI:10.3348/kjr.2020.1277
22. Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiogrpahy: Next steps). J Am Coll Cardiol. 2014;63(12):1145-55. DOI:10.1016/j.jacc.2013.11.043
23. Bettencourt N, Chiribiri A, Schuster A, et al. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol. 2013;61(10):1099-107. DOI:10.1016/j.jacc.2012.12.020
24. Омаров Ю.А., Веселова Т.Н., Шахнович Р.М., и др. Перфузионная компьютерная томография миокарда с чреспищеводной электрокардиостимуляцией в качестве стресс-теста у больных с пограничными стенозами в коронарных артериях: сравнение с измерениями фракционного резерва кровотока. Кардиология. 2021;61(1):4-11 [Omarov YuA, Veselova TN, Shakhnovich RM, et al. Computed Tomography Myocardial Perfusion Imaging With Transesophageal Atrial Pacing Stress Test in Patients With Borderline Stenoses in the Coronary Arteries: a Comparison With Fractional Flow Reserve. Kardiologiia. 2021;61(1):4-11 (in Russian)]. DOI:10.18087/cardio.2021.1.n1343
25. Kim YH, Park SJ. Ischemia-guided percutaneous coronary intervention for patients with stable coronary artery disease. Circ J. 2013;77(8):1967‑74. DOI:10.1253/circj.cj-13-0376
26. Coughlan JJ, MacDonnell C, Arnous S, Kiernan TJ. Fractional flow reserve in 2017: current data and everyday practice. Exp Rev Cardiovasc Ther. 2017;15(6):457-72. DOI:10.1080/14779072.2017.1327810
27. De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991-1001. DOI:10.1056/nejmx120078
28. Liu X, Mo X, Zhang H, et al. A 2-year investigation of the impact of the computed tomography-derived fractional flow reserve calculated using a deep learning algorithm on routine decision-making for coronary artery disease management. Eur Radiol. 2021;31:7039-46. DOI:10.1007/s00330-021-07771-7
29. Leipsic J, Yang TH, Thompson A, et al. CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study. AJR Am J Roentgenol. 2014;202(5):989-94. DOI:10.2214/ajr.13.11441
30. Coenen A, Lubbers MM, Kurata A, et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology. 2015;274(3):674-83. DOI:10.1148/radiol.14140992
31. Chinnaiyan KM, Akasaka T, Amano T, et al. Rationale, design and goals of the HeartFlow assessing diagnostic value of non-invasive FFRCT in Coronary Care (ADVANCE) registry. J Cardiovasc Comput Tomogr. 2017;11:62-7. DOI:10.1016/j.jcct.2016.12.002
32. Henriksson L, Woisetschläger M, Alfredsson J, et al. The transluminal attenuation gradient does not add diagnostic accuracy to coronary computed tomography. Acta Radiologica. 2021;62(7):867-74. DOI:10.1177/0284185120943042
33. Choi JH, Min JK, Labounty TM, et al. Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4(11):1149-57. DOI:10.1016/j.jcmg.2011.09.006
34. Funama Y, Utsunomiya D, Oda S, et al. Transluminal attenuation-gradient coronary CT angiography on a 320-MDCT volume scanner: Effect of scan timing, coronary artery stenosis, and cardiac output using a contrast medium flow phantom. Phys Med. 2016;32(11):1415-21. DOI:10.1016/j.ejmp.2016.10.011
35. Nakanishi R, Matsumoto S, Alani A, et al. Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. Int J Cardiovasc Imaging. 2015;31(6):1251-9.
DOI:10.1007/s10554-015-0666-2
36. Bom MJ, Driessen RS, Stuijfzand WJ, et al. Diagnostic value of transluminal attenuation gradient for the presence of ischemia as defined by fractional flow reserve and quantitative positron emission tomography. JACC: Cardiovascular Imaging. 2019;12(2):323-33. DOI:10.1016/S0735-1097(18)32102-8
37. Wong DT, Ko BS, Cameron JD, et al. Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol. 2013;61(12):1271-9. DOI:10.1016/j.jacc.2012.12.029
38. Аншелес А.А., Сергиенко В.Б. Перфузия миокарда: что понимается под этим термином при визуализации различными методами лучевой диагностики? Кардиология. 2017;57(7):5-12 [Ansheles AA, Sergienko VB. Myocardial Perfusion Imaging Modalities: What do we Really see? Kardiologiia. 2017;57(7):5-12 (in Russian)]. DOI:10.18087/cardio.2017.7.10000
39. Johnson NP, Gould KL. Fractional Flow Reserve Returns to Its Origins: Quantitative Cardiac Positron Emission Tomography. Circ Cardiovasc Imaging. 2016;9(9). DOI:10.1161/CIRCIMAGING.116.005435
40. Сергиенко В.Б., Аншелес А.А., Шульгин Д.Н., и др. Методические рекомендации перфузионная сцинтиграфия и ОЭКТ миокарда. Кардиологический вестник. 2015;10(2):6-21 [Sergienko VB, Ansheles AA, Shulgin DN, et al. Methodical recommendations Perfusion scintigraphy and OECT of the myocardium. Kardiologicheskiy vestnik. 2015;10(2):6-21 (in Russian)].
41. Шипулин В.В., Саушкин В.В., Пряхин А.С., и др. Возможности перфузионной сцинтиграфии миокарда в обследовании пациентов с ишемической кардиомиопатией. Российский электронный журнал лучевой диагностики. 2019;9(3):155-75 [Shipulin VV, Saushkin VV, Pryakhin, AS, et al. The value of myocardium perfusion imaging in assessment of patients with ischemic cardiomyopathy. Russian Electronic Journal of Radiology. 2019;9(3):155-75 (in Russian)]. DOI:10.21569/2222-7415-2019-9-3-155-175
42. Бедрицкий С.А., Гендлин Г.Е., Никитин И.Г. Современные неинвазивные методы диагностики ишемической болезни сердца и роль стресс-эхокардиографии в оценке патологии сердца. Лечебное дело. 2018;4:62-9 [Bedritsky SA, Gendlin GE, Nikitin IG. Modern non-invasive methods for the diagnosis of coronary artery disease and the role of stress echocardiography in the assessment of heart diseases. Lechebnoe delo. 2018;4:62-9 (in Russian)]. DOI:10.24411/2071-5315-2018-12067
43. Perrone-Filardi P, Coca A, Galderisi M, et al. Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: a consensus paper from the European Association of Cardiovascular Imaging (EACVI), the European Society of Cardiology Council on Hypertension, and the European Society of Hypertension (ESH). Eur Heart J Cardiovasc Imaging. 2017;18(9):945-60. DOI:10.1093/ehjci/jex094
44. Kossaify A, Bassil E, Kossaify M. Stress Echocardiography: Concept and Criteria, Structure and Steps, Obstacles and Outcomes, Focused Update and Review. Cardiol Research. 2020;11(2):89-96. DOI:10.14740/cr851
45. Steeds RP, Wheeler R, Bhattacharyya S, et al. Stress echocardiography in coronary artery disease: a practical guideline from the British Society of Echocardiography. Echo Research and Practice. 2019;6(2):G17-33. DOI:10.1530/ERP-18-0068
46. Pellikka PA, Arruda‑Olson A, Chaudhry FA, et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33:1‑41.e8. DOI:10.1016/j.echo.2019.07.001
47. Porter TR, Feinstein SB, Ten Cate FJ, van den Bosch AE. New Applications in Echocardiography for Ultrasound Contrast Agents in the 21st Century. Ultrasound Med Biol. 2020;46. DOI:10.1016/j.ultrasmedbio.2020.01.004
48. Alajaji W, Baydoun A, Morris N, et al. Myocardial Contrast Echocardiography has Favorable Sensitivity and Specificity for Coronary Artery Disease Diagnosis in Patients with LBBB: A Meta-Analysis. J Cardiovas Dis Diagn. 2016;S1:003. DOI:10.4172/2329-9517.S1-003
________________________________________________
1. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020;41(3):407-7. DOI:10.1093/eurheartj/ehz425
2. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. DOI:10.1093/eurheartj/ehy394
3. Groepenhoff F, Klaassen RGM, Valstar GB, et al. Evaluation of non-invasive imaging parameters in coronary microvascular disease: a systematic review. BMC Med Imaging. 2021;21(5). DOI:10.1186/s12880-020-00535-7
4. Hwang D, Yang S, Zhang J, Koo BK. Physiologic Assessment after Coronary Stent Implantation. Korean Circ J. 2021;51(3):189-201. DOI:10.4070/kcj.2020.0548
5. Mironov VM, Merkulov EV, Samko AN. Assessment of Fractional Coronary Blood Flow Reserve. Kardiologiia. 2012;8(52):66-71 (in Russian).
6. Kim YH, Ahn JM, Park DW, et al. Impact of ischemia-guided revascularization with myocardial perfusion imaging for patients with multivessel coronary disease. J Am Coll Cardiol. 2012;60(3):181-90. DOI:10.1016/j.jacc.2012.02.061
7. Toma M, Buller CE, Westerhout CM, et al. Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J. 2010;31:1701-7. DOI:10.1093/eurheartj/ehq129
8. Hassanin A, Brener SJ, Lansky AJ, et al. Prognostic impact of multivessel versus culprit vessel only percutaneous intervention for patients with multivessel coronary artery disease presenting with acute coronary syndrome. EuroIntervention. 2015;11:293-300. DOI:10.4244/EIJY14M08_05
9. Smits PC, Abdel-Wahab M, Neumann FJ, et al. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376:1234-44. DOI:10.1056/NEJMoa1701067
10. Engstrom T, Kelbaek H, Helqvist S, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386:665-71. DOI:10.1016/s0140-6736(15)60648-1
11. Escaned J, Ryan N, Mejia-Renteria H, et al. Safety of the deferral of coronary revascularization on the basis of instantaneous wave-free ratio and fractional flow reserve measurements in stable coronary artery disease and acute coronary syndromes. J Am Coll Cardiol Intv. 2018;11:1437-49. DOI:10.1016/j.jcin.2018.05.029
12. Hakeem A, Edupuganti MM, Almomani A, et al. Long-term prognosis of deferred acute coronary syndrome lesions based on nonischemic fractional flow reserve. J Am Coll Cardiol. 2016;68:1181-91. DOI:10.1016/j.jacc.2016.06.035
13. Cerrato E, Mejía-Rentería H, Dehbi HM, et al. Revascularization deferral of nonculprit stenoses on the basis of fractional flow reserve: 1-year outcomes of 8,579 patients. J Am Coll Cardiol Intv. 2020;13:1894-903. DOI:10.1016/j.jcin.2020.05.024
14. Leipsic J, Abbara S, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2014;8(5):342-58. DOI:10.1016/j.jcct.2014.07.003
15. Wu Z, He Y, Li W, Cheng S. Computed tomography coronary angiography vs. standard diagnostic procedure for the diagnosis of angina due to coronary heart disease: A cross-sectional study. Exp Ther Med. 2019;17(4):2485-94. DOI:10.3892/etm.2019.7229
16. Eltabbakh AR, Dawoud MA, Langer M, et al. ‘Triple-rule-out’ CT angiography for clinical decision making and early triage of acute chest pain patients: use of 320-multislice CT angiography. Egypt J Radiol Nucl Med. 2019;50:3. DOI:10.1186/s43055-019-0003-1
17. Koo HJ, Yang DH, Kim YH, et al. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int J Cardiovasc Imaging. 2016;32:1-19. DOI:10.1007/s10554-015-0825-5
18. Takx RA, Blomberg BA, El Aidi H, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional-flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1):e002666. DOI:10.1161/circimaging.114.002666
19. Newhouse JH, Murphy RX Jr. Tissue distribution of soluble contrast: effect of dose variation and changes with time. AJR Am J Roentgenol. 1981;136(3):463-7. DOI:10.2214/ajr.136.3.463
20. Yang DH, Kim YH. CT myocardial perfusion imaging: current status and future perspectives. Int J Cardiovasc Imaging. 2017;33:1009-20. DOI:10.1007/s10554-017-1102-6
21. Yun CH, Hung CL, Wen MS, et al. CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments. Korean J Radiol. 2021;22(11):1749-63. DOI:10.3348/kjr.2020.1277
22. Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiogrpahy: Next steps). J Am Coll Cardiol. 2014;63(12):1145-55. DOI:10.1016/j.jacc.2013.11.043
23. Bettencourt N, Chiribiri A, Schuster A, et al. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol. 2013;61(10):1099-107. DOI:10.1016/j.jacc.2012.12.020
24. Omarov YuA, Veselova TN, Shakhnovich RM, et al. Computed Tomography Myocardial Perfusion Imaging With Transesophageal Atrial Pacing Stress Test in Patients With Borderline Stenoses in the Coronary Arteries: a Comparison With Fractional Flow Reserve. Kardiologiia. 2021;61(1):4-11 (in Russian). DOI:10.18087/cardio.2021.1.n1343
25. Kim YH, Park SJ. Ischemia-guided percutaneous coronary intervention for patients with stable coronary artery disease. Circ J. 2013;77(8):1967‑74. DOI:10.1253/circj.cj-13-0376
26. Coughlan JJ, MacDonnell C, Arnous S, Kiernan TJ. Fractional flow reserve in 2017: current data and everyday practice. Exp Rev Cardiovasc Ther. 2017;15(6):457-72. DOI:10.1080/14779072.2017.1327810
27. De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991-1001. DOI:10.1056/nejmx120078
28. Liu X, Mo X, Zhang H, et al. A 2-year investigation of the impact of the computed tomography-derived fractional flow reserve calculated using a deep learning algorithm on routine decision-making for coronary artery disease management. Eur Radiol. 2021;31:7039-46. DOI:10.1007/s00330-021-07771-7
29. Leipsic J, Yang TH, Thompson A, et al. CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study. AJR Am J Roentgenol. 2014;202(5):989-94. DOI:10.2214/ajr.13.11441
30. Coenen A, Lubbers MM, Kurata A, et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology. 2015;274(3):674-83. DOI:10.1148/radiol.14140992
31. Chinnaiyan KM, Akasaka T, Amano T, et al. Rationale, design and goals of the HeartFlow assessing diagnostic value of non-invasive FFRCT in Coronary Care (ADVANCE) registry. J Cardiovasc Comput Tomogr. 2017;11:62-7. DOI:10.1016/j.jcct.2016.12.002
32. Henriksson L, Woisetschläger M, Alfredsson J, et al. The transluminal attenuation gradient does not add diagnostic accuracy to coronary computed tomography. Acta Radiologica. 2021;62(7):867-74. DOI:10.1177/0284185120943042
33. Choi JH, Min JK, Labounty TM, et al. Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4(11):1149-57. DOI:10.1016/j.jcmg.2011.09.006
34. Funama Y, Utsunomiya D, Oda S, et al. Transluminal attenuation-gradient coronary CT angiography on a 320-MDCT volume scanner: Effect of scan timing, coronary artery stenosis, and cardiac output using a contrast medium flow phantom. Phys Med. 2016;32(11):1415-21. DOI:10.1016/j.ejmp.2016.10.011
35. Nakanishi R, Matsumoto S, Alani A, et al. Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. Int J Cardiovasc Imaging. 2015;31(6):1251-9.
DOI:10.1007/s10554-015-0666-2
36. Bom MJ, Driessen RS, Stuijfzand WJ, et al. Diagnostic value of transluminal attenuation gradient for the presence of ischemia as defined by fractional flow reserve and quantitative positron emission tomography. JACC: Cardiovascular Imaging. 2019;12(2):323-33. DOI:10.1016/S0735-1097(18)32102-8
37. Wong DT, Ko BS, Cameron JD, et al. Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol. 2013;61(12):1271-9. DOI:10.1016/j.jacc.2012.12.029
38. Аншелес А.А., Сергиенко В.Б. Перфузия миокарда: что понимается под этим термином при визуализации различными методами лучевой диагностики? Кардиология. 2017;57(7):5-12 [Ansheles AA, Sergienko VB. Myocardial Perfusion Imaging Modalities: What do we Really see? Kardiologiia. 2017;57(7):5-12 (in Russian)]. DOI:10.18087/cardio.2017.7.10000
39. Johnson NP, Gould KL. Fractional Flow Reserve Returns to Its Origins: Quantitative Cardiac Positron Emission Tomography. Circ Cardiovasc Imaging. 2016;9(9). DOI:10.1161/CIRCIMAGING.116.005435
40. Сергиенко В.Б., Аншелес А.А., Шульгин Д.Н., и др. Методические рекомендации перфузионная сцинтиграфия и ОЭКТ миокарда. Кардиологический вестник. 2015;10(2):6-21 [Sergienko VB, Ansheles AA, Shulgin DN, et al. Methodical recommendations Perfusion scintigraphy and OECT of the myocardium. Kardiologicheskiy vestnik. 2015;10(2):6-21 (in Russian)].
41. Shipulin VV, Saushkin VV, Pryakhin, AS, et al. The value of myocardium perfusion imaging in assessment of patients with ischemic cardiomyopathy. Russian Electronic Journal of Radiology. 2019;9(3):155-75 (in Russian). DOI:10.21569/2222-7415-2019-9-3-155-175
42. Bedritsky SA, Gendlin GE, Nikitin IG. Modern non-invasive methods for the diagnosis of coronary artery disease and the role of stress echocardiography in the assessment of heart diseases. Lechebnoe delo. 2018;4:62-9 (in Russian). DOI:10.24411/2071-5315-2018-12067
43. Perrone-Filardi P, Coca A, Galderisi M, et al. Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: a consensus paper from the European Association of Cardiovascular Imaging (EACVI), the European Society of Cardiology Council on Hypertension, and the European Society of Hypertension (ESH). Eur Heart J Cardiovasc Imaging. 2017;18(9):945-60. DOI:10.1093/ehjci/jex094
44. Kossaify A, Bassil E, Kossaify M. Stress Echocardiography: Concept and Criteria, Structure and Steps, Obstacles and Outcomes, Focused Update and Review. Cardiol Research. 2020;11(2):89-96. DOI:10.14740/cr851
45. Steeds RP, Wheeler R, Bhattacharyya S, et al. Stress echocardiography in coronary artery disease: a practical guideline from the British Society of Echocardiography. Echo Research and Practice. 2019;6(2):G17-33. DOI:10.1530/ERP-18-0068
46. Pellikka PA, Arruda‑Olson A, Chaudhry FA, et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33:1‑41.e8. DOI:10.1016/j.echo.2019.07.001
47. Porter TR, Feinstein SB, Ten Cate FJ, van den Bosch AE. New Applications in Echocardiography for Ultrasound Contrast Agents in the 21st Century. Ultrasound Med Biol. 2020;46. DOI:10.1016/j.ultrasmedbio.2020.01.004
48. Alajaji W, Baydoun A, Morris N, et al. Myocardial Contrast Echocardiography has Favorable Sensitivity and Specificity for Coronary Artery Disease Diagnosis in Patients with LBBB: A Meta-Analysis. J Cardiovas Dis Diagn. 2016;S1:003. DOI:10.4172/2329-9517.S1-003
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия
*mironova_o_yu@staff.sechenov.ru
________________________________________________
Olga Iu. Mironova*1, Georgy O. Isaev1, Maria V. Berdysheva1, Roman M. Shakhnovich2, Victor V. Fomin1
1Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2Chazov National Medical Research Center of Cardiology, Moscow, Russia
*mironova_o_yu@staff.sechenov.ru