Pisklova MV, Baulina NM, Kiselev IS, Zateyshchikov DA, Favorova OO, Chumakova OS. The levels of certain circulating microRNAs in hypertrophic cardiomyopathy are associated with echocardiographic parameters. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(4):302–308. DOI: 10.26442/00403660.2023.04.202162
Уровни отдельных циркулирующих микроРНК при гипертрофической кардиомиопатии ассоциированы с эхокардиографическими показателями
Писклова М.В., Баулина Н.М., Киселев И.С., Затейщиков Д.А., Фаворова О.О., Чумакова О.С. Уровни отдельных циркулирующих микроРНК при гипертрофической кардиомиопатии ассоциированы с эхокардиографическими показателями. Терапевтический архив. 2023;95(4):302–308.
DOI: 10.26442/00403660.2023.04.202162
Pisklova MV, Baulina NM, Kiselev IS, Zateyshchikov DA, Favorova OO, Chumakova OS. The levels of certain circulating microRNAs in hypertrophic cardiomyopathy are associated with echocardiographic parameters. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(4):302–308. DOI: 10.26442/00403660.2023.04.202162
Обоснование. Гипертрофическая кардиомиопатия (ГКМП) – самая частая наследственная патология сердца; она характеризуется гипертрофией миокарда левого желудочка (ЛЖ), которую нельзя объяснить гемодинамическими причинами. В основе патогенеза заболевания лежит дисфункция саркомера, однако только у 1/2 больных с фенотипом ГКМП обнаруживаются мутации в генах белков саркомера. Заболеванию присуща как генетическая, так и выраженная клиническая гетерогенность, в связи с чем все больше исследований фокусируется на изучении регуляции экспрессии генов при ГКМП и влияния ее нарушений на клинический фенотип. Один из уровней регуляции экспрессии генов – посттранскрипционный – опосредуется через короткие некодирующие микроРНК, ингибирующие синтез белков. Цель. Выявить взаимосвязи между уровнями циркулирующих микроРНК, для которых ранее показана ассоциация с ГКМП, и клиническими параметрами больных с фенотипом ГКМП. Материалы и методы. Проведен поиск взаимосвязи уровней miR-499a-5p, miR-454 и miR-339-5p в плазме крови с клиническими параметрами у 33 больных с ГКМП, обследованных в период с 2019 по 2021 г. Результаты. У 49% больных найдены варианты в ГКМП-ассоциированных генах. Клинических различий между больными с наличием и отсутствием генетических вариантов не наблюдали. Уровень miR-499a-5p коррелировал с фракцией выброса ЛЖ, уровень miR-454 – с параметрами диастолической функции ЛЖ, а miR-339-5p – с размером левого предсердия. Заключение. Уровни отдельных циркулирующих микроРНК у больных с ГКМП коррелируют с эхокардиографическими параметрами.
Background. Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease; it is characterized by left ventricular (LV) hypertrophy that cannot be explained by hemodynamic causes. It is believed that sarcomere dysfunction underlies the pathogenesis of this disease, however, only half of patients with the HCM phenotype have mutations in sarcomere-encoding genes. HCM is distinguished by both high genetic and clinical heterogeneity and therefore more studies are seeking to investigate a regulation of gene expression in HCM and how the abnormalities in this process can affect disease phenotype. One of the levels of regulation of gene expression – a post-transcriptional level – is mediated by short non-coding microRNAs that inhibit protein synthesis. Aim. To identify the correlations between levels of circulating microRNAs, previously shown to be associated with HCM, and clinical parameters of HCM patients. Materials and methods. Correlation analysis of miR-499a-5p, miR-454 and miR-339-5p plasma levels and clinical parameters of 33 HCM patients, examined from 2019 to 2021, has been performed. Results. Variants in HCM-associated genes were found in 49% of patients. There were no clinical differences between genotype-positive and genotype-negative patients. MiR-499a-5p level correlated with LV ejection fraction, miR-454 level – with LV diastolic function parameters and miR-339-5p level – with left atrium dimension. Conclusion. Levels of certain circulating microRNAs correlate with echocardiographic parameters in HCM patients.
1. Maron BJ, Desai MY, Nishimura RA, et al. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol. 2022;79(4):372-89. DOI:10.1016/j.jacc.2021.12.002
2. Габрусенко С.А., Гудкова А.Я., Козиолова Н.А., и др. Гипертрофическая кардиомиопатия. Клинические рекомендации. 2020. Российский кардиологический журнал. 2021;26(5):4541 [Gabrusenko SA, Gudkova AYa, Koziolova NA, et al. 2020 Clinical practice guidelines for Hypertrophic cardiomyopathy. Russian Journal of Cardiology. 2021;26(5):4541 (in Russian)]. DOI:10.15829/1560-4071-2021-4541
3. Seidman CE, Seidman J, Robbins J, Watkins H. Identifying Sarcomere Gene Mutations in Hypertrophic Cardiomyopathy. Circ Res. 2011;108(6):743-50. DOI:10.1161/CIRCRESAHA.110.223834
4. Chiti E, Di Paolo M, Turillazzi E, Rocchi A. MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy. Diagnostics (Basel). 2021;11(9):1720. DOI:10.3390/diagnostics11091720
5. Cui C, Cui Q. The relationship of human tissue microRNAs with those from body fluids. Sci Rep. 2020;10(1):5644. DOI:10.1038/s41598-020-62534-6
6. Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073-84. DOI:10.1038/aps.2018.30
7. Baulina N, Pisklova M, Kiselev I, et al. Circulating miR-499a-5p Is a Potential Biomarker of MYH7-Associated Hypertrophic Cardiomyopathy. Int J Mol Sci. 2022;23(7):3791. DOI:10.3390/ijms23073791
8. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733-79. DOI:10.1093/eurheartj/ehu284
9. Dragasis S, Vlachos K, Kariki O, et al. Atrial fibrillation in hypertrophic cardiomyopathy – A contemporary mini-review. Hellenic J Cardiol. 2022;67:66-72. DOI:10.1016/j.hjc.2022.05.002
10. Guttmann OP, Pavlou M, O’Mahony C, et al. Predictors of atrial fibrillation in hypertrophic cardiomyopathy. Heart. 2017;103(9):672-8. DOI:10.1136/heartjnl-2016-309672
11. Neubauer S, Kolm P, Ho CY, et al. Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry. J Am Coll Cardiol. 2019;74(19):2333-45. DOI:10.1016/j.jacc.2019.08.1057
12. Cardim N, Brito D, Rocha Lopes L, et al. The Portuguese Registry of Hypertrophic Cardiomyopathy: Overall results. Rev Port Cardiol (Engl Ed). 2018;37(1):1-10. DOI:10.1016/j.repc.2017.08.005
13. Ho CY, Day SM, Ashley EA, et al. Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy. Circulation. 2018;138(14):1387-98. DOI:10.1161/CIRCULATIONAHA.117.033200
14. Biagini E, Pazzi C, Olivotto I, et al. Usefulness of Electrocardiographic Patterns at Presentation to Predict Long-term Risk of Cardiac Death in Patients With Hypertrophic Cardiomyopathy. Am J Cardiol. 2016;118(3):432-9. DOI:10.1016/j.amjcard.2016.05.023
15. Dumont CA, Monserrat L, Soler R, et al. Interpretation of electrocardiographic abnormalities in hypertrophic cardiomyopathy with cardiac magnetic resonance. Eur Heart J. 2006;27(14):1725-31. DOI:10.1093/eurheartj/ehl101
16. Andreeva S, Chumakova O, Karelkina E, et al. Case Report: Two New Cases of Autosomal-Recessive Hypertrophic Cardiomyopathy Associated With TRIM63-Compound Heterozygous Variant. Frontiers in Genetics. 2022;13. Available at: https://www.frontiersin.org/article/10.3389/fgene.2022.743472. Accessed: 07.05.2022.
17. Bell ML, Buvoli M, Leinwand LA. Uncoupling of Expression of an Intronic MicroRNA and Its Myosin Host Gene by Exon Skipping. Mol Cell Biol. 2010;30(8):1937-45. DOI:10.1128/MCB.01370-09
18. Zhang C, Zhang H, Zhao L, et al. Differential Expression of microRNAs in Hypertrophied Myocardium and Their Relationship to Late Gadolinium Enhancement, Left Ventricular Hypertrophy and Remodeling in Hypertrophic Cardiomyopathy. Diagnostics. 2022;12(8):1978. DOI:10.3390/diagnostics12081978
19. Smiseth OA, Morris DA, Cardim N, et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2022;23(2):e34-61. DOI:10.1093/ehjci/jeab154
20. Nair N, Kumar S, Gongora E, Gupta S. Circulating miRNA as novel markers for diastolic dysfunction. Mol Cell Biochem. 2013;376(1):33-40. DOI:10.1007/s11010-012-1546-x
21. Wang Y, Pan W, Bai X, et al. microRNA-454-mediated NEDD4-2/TrkA/cAMP axis in heart failure: Mechanisms and cardioprotective implications. J Cell Mol Med. 2021;25(11):5082-98. DOI:10.1111/jcmm.16491
22. Saddic LA, Chang TW, Sigurdsson MI, et al. Integrated microRNA and mRNA responses to acute human left ventricular ischemia. Physiol Genomics. 2015;47(10):455-62. DOI:10.1152/physiolgenomics.00049.2015
23. Bi X, Zhang Y, Yu Y, et al. MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int. 2022;46(2):288-99. DOI:10.1002/cbin.11731
24. Shi L, Zhang Y, Zhang J, et al. MiR-339 is a potential biomarker of coronary heart disease to aggravate oxidative stress through Nrf2/FOXO3 targeting Sirt2. Ann Palliat Med. 2021;10(3):2596609. DOI:10.21037/apm-20-603
25. Gartz M, Beatka M, Prom MJ, et al. Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy. Hum Mol Genet. 2021;30(23):2347-61. DOI:10.1093/hmg/ddab199
________________________________________________
1. Maron BJ, Desai MY, Nishimura RA, et al. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol. 2022;79(4):372-89. DOI:10.1016/j.jacc.2021.12.002
2. Gabrusenko SA, Gudkova AYa, Koziolova NA, et al. 2020 Clinical practice guidelines for Hypertrophic cardiomyopathy. Russian Journal of Cardiology. 2021;26(5):4541 (in Russian). DOI:10.15829/1560-4071-2021-4541
3. Seidman CE, Seidman J, Robbins J, Watkins H. Identifying Sarcomere Gene Mutations in Hypertrophic Cardiomyopathy. Circ Res. 2011;108(6):743-50. DOI:10.1161/CIRCRESAHA.110.223834
4. Chiti E, Di Paolo M, Turillazzi E, Rocchi A. MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy. Diagnostics (Basel). 2021;11(9):1720. DOI:10.3390/diagnostics11091720
5. Cui C, Cui Q. The relationship of human tissue microRNAs with those from body fluids. Sci Rep. 2020;10(1):5644. DOI:10.1038/s41598-020-62534-6
6. Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073-84. DOI:10.1038/aps.2018.30
7. Baulina N, Pisklova M, Kiselev I, et al. Circulating miR-499a-5p Is a Potential Biomarker of MYH7-Associated Hypertrophic Cardiomyopathy. Int J Mol Sci. 2022;23(7):3791. DOI:10.3390/ijms23073791
8. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733-79. DOI:10.1093/eurheartj/ehu284
9. Dragasis S, Vlachos K, Kariki O, et al. Atrial fibrillation in hypertrophic cardiomyopathy – A contemporary mini-review. Hellenic J Cardiol. 2022;67:66-72. DOI:10.1016/j.hjc.2022.05.002
10. Guttmann OP, Pavlou M, O’Mahony C, et al. Predictors of atrial fibrillation in hypertrophic cardiomyopathy. Heart. 2017;103(9):672-8. DOI:10.1136/heartjnl-2016-309672
11. Neubauer S, Kolm P, Ho CY, et al. Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry. J Am Coll Cardiol. 2019;74(19):2333-45. DOI:10.1016/j.jacc.2019.08.1057
12. Cardim N, Brito D, Rocha Lopes L, et al. The Portuguese Registry of Hypertrophic Cardiomyopathy: Overall results. Rev Port Cardiol (Engl Ed). 2018;37(1):1-10. DOI:10.1016/j.repc.2017.08.005
13. Ho CY, Day SM, Ashley EA, et al. Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy. Circulation. 2018;138(14):1387-98. DOI:10.1161/CIRCULATIONAHA.117.033200
14. Biagini E, Pazzi C, Olivotto I, et al. Usefulness of Electrocardiographic Patterns at Presentation to Predict Long-term Risk of Cardiac Death in Patients With Hypertrophic Cardiomyopathy. Am J Cardiol. 2016;118(3):432-9. DOI:10.1016/j.amjcard.2016.05.023
15. Dumont CA, Monserrat L, Soler R, et al. Interpretation of electrocardiographic abnormalities in hypertrophic cardiomyopathy with cardiac magnetic resonance. Eur Heart J. 2006;27(14):1725-31. DOI:10.1093/eurheartj/ehl101
16. Andreeva S, Chumakova O, Karelkina E, et al. Case Report: Two New Cases of Autosomal-Recessive Hypertrophic Cardiomyopathy Associated With TRIM63-Compound Heterozygous Variant. Frontiers in Genetics. 2022;13. Available at: https://www.frontiersin.org/article/10.3389/fgene.2022.743472. Accessed: 07.05.2022.
17. Bell ML, Buvoli M, Leinwand LA. Uncoupling of Expression of an Intronic MicroRNA and Its Myosin Host Gene by Exon Skipping. Mol Cell Biol. 2010;30(8):1937-45. DOI:10.1128/MCB.01370-09
18. Zhang C, Zhang H, Zhao L, et al. Differential Expression of microRNAs in Hypertrophied Myocardium and Their Relationship to Late Gadolinium Enhancement, Left Ventricular Hypertrophy and Remodeling in Hypertrophic Cardiomyopathy. Diagnostics. 2022;12(8):1978. DOI:10.3390/diagnostics12081978
19. Smiseth OA, Morris DA, Cardim N, et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2022;23(2):e34-61. DOI:10.1093/ehjci/jeab154
20. Nair N, Kumar S, Gongora E, Gupta S. Circulating miRNA as novel markers for diastolic dysfunction. Mol Cell Biochem. 2013;376(1):33-40. DOI:10.1007/s11010-012-1546-x
21. Wang Y, Pan W, Bai X, et al. microRNA-454-mediated NEDD4-2/TrkA/cAMP axis in heart failure: Mechanisms and cardioprotective implications. J Cell Mol Med. 2021;25(11):5082-98. DOI:10.1111/jcmm.16491
22. Saddic LA, Chang TW, Sigurdsson MI, et al. Integrated microRNA and mRNA responses to acute human left ventricular ischemia. Physiol Genomics. 2015;47(10):455-62. DOI:10.1152/physiolgenomics.00049.2015
23. Bi X, Zhang Y, Yu Y, et al. MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int. 2022;46(2):288-99. DOI:10.1002/cbin.11731
24. Shi L, Zhang Y, Zhang J, et al. MiR-339 is a potential biomarker of coronary heart disease to aggravate oxidative stress through Nrf2/FOXO3 targeting Sirt2. Ann Palliat Med. 2021;10(3):2596609. DOI:10.21037/apm-20-603
25. Gartz M, Beatka M, Prom MJ, et al. Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy. Hum Mol Genet. 2021;30(23):2347-61. DOI:10.1093/hmg/ddab199
1 ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
3 ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента РФ, Москва, Россия;
4 ГБУЗ «Городская клиническая больница №17» Департамента здравоохранения г. Москвы, Москва, Россия
*pisklova_maria@mail.ru
________________________________________________
Maria V. Pisklova*1,2, Natalia M. Baulina1, Ivan S. Kiselev1, Dmitry A. Zateyshchikov1,3, Olga O. Favorova1,2, Olga S. Chumakova1,3,4
1 Chazov National Medical Research Center of Cardiology, Moscow, Russia;
2 Pirogov Russian National Research Medical University, Moscow, Russia;
3 Central State Medical Academy of the Administrative Department of the President of the Russian Federation, Moscow, Russia;
4 City Clinical Hospital №17, Moscow, Russia
*pisklova_maria@mail.ru