Samoilova IuG, Podchinenova DV, Matveeva MV, Kudlay DA, Oleynik OA, Tolmachev IV, Kaverina IS, Vachadze TD, Kovarenko MA, Loginova OA. Structural and functional characteristics of the brain and their role in the development of eating behaviour in obesity: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(5):434–437.
DOI: 10.26442/00403660.2023.05.202228
Структурно-функциональные характеристики головного мозга и их роль в формировании пищевого поведения при ожирении
Самойлова Ю.Г., Подчиненова Д.В., Матвеева М.В., Кудлай Д.А., Олейник О.А., Толмачев И.В., Каверина И.С., Вачадзе Т.Д., Коваренко М.А., Логинова О.А. Структурно-функциональные характеристики головного мозга и их роль в формировании пищевого поведения при ожирении. Терапевтический архив. 2023;95(5):434–437. DOI: 10.26442/00403660.2023.05.202228
Samoilova IuG, Podchinenova DV, Matveeva MV, Kudlay DA, Oleynik OA, Tolmachev IV, Kaverina IS, Vachadze TD, Kovarenko MA, Loginova OA. Structural and functional characteristics of the brain and their role in the development of eating behaviour in obesity: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(5):434–437.
DOI: 10.26442/00403660.2023.05.202228
Ожирение является одной из важнейших проблем общественного здравоохранения, решение которой требует новых подходов. Несмотря на все предпринимаемые меры, разработанные поведенческие и терапевтические вмешательства продемонстрировали ограниченную эффективность в сдерживании эпидемии ожирения. Результаты визуализационных исследований головного мозга свидетельствуют о существовании факторов нейронной уязвимости и структурных изменений, которые связаны с развитием ожирения и расстройств пищевого поведения. Данный обзор подчеркивает клиническую актуальность исследований в области нейровизуализации головного мозга у лиц с ожирением, что необходимо для предотвращения рискованного поведения, ранней диагностики, а также разработки новых более безопасных и эффективных методов лечения.
Obesity is a major public health problem that requires new approaches. Despite all interventions, the behavioural and therapeutic interventions developed have demonstrated limited effectiveness in curbing the obesity epidemic. Findings from imaging studies of the brain suggest the existence of neural vulnerabilities and structural changes that are associated with the development of obesity and eating disorders. This review highlights the clinical relevance of brain neuroimaging research in obese individuals to prevent risky behaviour, early diagnosis, and the development of new safer and more effective treatments.
Keywords: functional magnetic resonance imaging, eating behavior, neuroimaging, obesity
1. WHO European Regional Obesity Report 2022. World Health Organization. Regional Office for Europe. Available at: https://apps.who.int/iris/handle/10665/353747. Accessed: 07.03.2023.
2. Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage: Clinical. 2015;8:1-31. DOI:10.1016/j.nicl.2015.03.016
3. Олейник О.А., Кудлай Д.А., Самойлова Ю.Г., и др. Применение технологий нейровизуализации головного мозга при ожирении в детском возрасте. Педиатрия. Журнал им. Г.Н. Сперанского. 2021;100(6):91-6 [Olejnik O, Kudlaj D, Samojlova Iu, et al. Application of brain neuroimaging technologies for child hood obesity. Pediatria n.a. GN Speransky. 2021;100(6):91-6 (in Russian)]. DOI:10.24110/0031-403X-2021-100-6-91-96
4. Frisoni GB, Altomare D, Thal DR, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53-66.
DOI:10.1038/s41583-021-00533-w
5. Harnischfeger F, Dando R. Obesity-induced taste dysfunction, and its implications for dietary intake. Int J Obes. 2021;45(8):1644-55. DOI:10.1038/s41366-021-00855-w
6. Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. B J Radiol. 2018;20170910. DOI:10.1259/bjr.20170910
7. Morales I, Berridge KC. ‘Liking’ and ‘wanting’ in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav. 2020;227:113152. DOI:10.1016/j.physbeh.2020.113152
8. Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord. 2022;23(4):719-31. DOI:10.1007/s11154-022-09720-1
9. Drelich-Zbroja A, Matuszek M, Kaczor M, Kuczyńska M. Functional Magnetic Resonance Imaging and Obesity – Novel Ways to Seen the Unseen. J Clin Med. 2022;11(12):3561. DOI:10.3390/jcm11123561
10. Sager G, Akgun E, Abuqbeitah M, et al. Comparison of brain F-18 FDG PET/MRI with PET/CT imaging in pediatric patients. Clin Neurol Neurosurg. 2021;206:106669. DOI:10.1016/j.clineuro.2021.106669
11. Neseliler S, Han JE, Dagher A. The Use of Functional Magnetic Resonance Imaging in the Study of Appetite and Obesity. In: Appetite and Food Intake. Second edition. Boca Raton: CRC Press, 2017. Previous edition: CRC Press; 2017; p. 117-34. DOI:10.1201/9781315120171-6
12. Yoshikawa A, Masaoka Y, Yoshida M, et al. Heart Rate and Respiration Affect the Functional Connectivity of Default Mode Network in Resting-State Functional Magnetic Resonance Imaging. Front Neurosci. 2020;14. DOI:10.3389/fnins.2020.00631
13. Trattnig S, Springer E, Bogner W, et al. Key clinical benefits of neuroimaging at 7 T. NeuroImage. 2018;168:477-89. DOI:10.1016/j.neuroimage.2016.11.031
14. Torrisi S, Chen G, Glen D, et al. Statistical power comparisons at 3T and 7T with a GO/NOGO task. NeuroImage. 2018;175:100-10. DOI:10.1016/j.neuroimage.2018.03.071
15. Viessmann O, Polimeni JR. High-resolution fMRI at 7 Tesla: challenges, promises and recent developments for individual-focused fMRI studies. Curr Opin Behav Sci. 2021;40:96-104. DOI:10.1016/j.cobeha.2021.01.011
16. Veldhuizen MG, Cecchetto C, Fjaeldstad AW, et al. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Front Syst Neurosci. 2022;16. DOI:10.3389/fnsys.2022.885304
17. Smeets PA, Dagher A, Hare TA, et al. Good practice in food-related neuroimaging. Am J Clin Nutr. 2019;109(3):491-503. DOI:10.1093/ajcn/nqy344
18. Veldhuizen MG, Babbs RK, Patel B, et al. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Curr Biol. 2017;27(16):2476-85.e6. DOI:10.1016/j.cub.2017.07.018
19. Althubeati S, Avery A, Tench CR, et al. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci Biobehav Rev. 2022;136:104603. DOI:10.1016/j.neubiorev.2022.104603
20. Devoto F, Coricelli C, Paulesu E, Zapparoli L. Neural circuits mediating food cue-reactivity: Toward a new model shaping the interplay of internal and external factors. Front Nutr. 2022;9. DOI:10.3389/fnut.2022.954523
21. Steward T, Wierenga CE. Foreword to the special issue on the neuroscience of obesity and related disorders. Rev Endocr Metab Disord. 2022;23(4):679-81.
DOI:10.1007/s11154-022-09739-4
________________________________________________
1. WHO European Regional Obesity Report 2022. World Health Organization. Regional Office for Europe. Available at: https://apps.who.int/iris/handle/10665/353747. Accessed: 07.03.2023.
2. Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage: Clinical. 2015;8:1-31. DOI:10.1016/j.nicl.2015.03.016
3. Olejnik O, Kudlaj D, Samojlova Iu, et al. Application of brain neuroimaging technologies for child hood obesity. Pediatria n.a. GN Speransky. 2021;100(6):91-6 (in Russian). DOI:10.24110/0031-403X-2021-100-6-91-96
4. Frisoni GB, Altomare D, Thal DR, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53-66.
DOI:10.1038/s41583-021-00533-w
5. Harnischfeger F, Dando R. Obesity-induced taste dysfunction, and its implications for dietary intake. Int J Obes. 2021;45(8):1644-55. DOI:10.1038/s41366-021-00855-w
6. Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. B J Radiol. 2018;20170910. DOI:10.1259/bjr.20170910
7. Morales I, Berridge KC. ‘Liking’ and ‘wanting’ in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav. 2020;227:113152. DOI:10.1016/j.physbeh.2020.113152
8. Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord. 2022;23(4):719-31. DOI:10.1007/s11154-022-09720-1
9. Drelich-Zbroja A, Matuszek M, Kaczor M, Kuczyńska M. Functional Magnetic Resonance Imaging and Obesity – Novel Ways to Seen the Unseen. J Clin Med. 2022;11(12):3561. DOI:10.3390/jcm11123561
10. Sager G, Akgun E, Abuqbeitah M, et al. Comparison of brain F-18 FDG PET/MRI with PET/CT imaging in pediatric patients. Clin Neurol Neurosurg. 2021;206:106669. DOI:10.1016/j.clineuro.2021.106669
11. Neseliler S, Han JE, Dagher A. The Use of Functional Magnetic Resonance Imaging in the Study of Appetite and Obesity. In: Appetite and Food Intake. Second edition. Boca Raton: CRC Press, 2017. Previous edition: CRC Press; 2017; p. 117-34. DOI:10.1201/9781315120171-6
12. Yoshikawa A, Masaoka Y, Yoshida M, et al. Heart Rate and Respiration Affect the Functional Connectivity of Default Mode Network in Resting-State Functional Magnetic Resonance Imaging. Front Neurosci. 2020;14. DOI:10.3389/fnins.2020.00631
13. Trattnig S, Springer E, Bogner W, et al. Key clinical benefits of neuroimaging at 7 T. NeuroImage. 2018;168:477-89. DOI:10.1016/j.neuroimage.2016.11.031
14. Torrisi S, Chen G, Glen D, et al. Statistical power comparisons at 3T and 7T with a GO/NOGO task. NeuroImage. 2018;175:100-10. DOI:10.1016/j.neuroimage.2018.03.071
15. Viessmann O, Polimeni JR. High-resolution fMRI at 7 Tesla: challenges, promises and recent developments for individual-focused fMRI studies. Curr Opin Behav Sci. 2021;40:96-104. DOI:10.1016/j.cobeha.2021.01.011
16. Veldhuizen MG, Cecchetto C, Fjaeldstad AW, et al. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Front Syst Neurosci. 2022;16. DOI:10.3389/fnsys.2022.885304
17. Smeets PA, Dagher A, Hare TA, et al. Good practice in food-related neuroimaging. Am J Clin Nutr. 2019;109(3):491-503. DOI:10.1093/ajcn/nqy344
18. Veldhuizen MG, Babbs RK, Patel B, et al. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Curr Biol. 2017;27(16):2476-85.e6. DOI:10.1016/j.cub.2017.07.018
19. Althubeati S, Avery A, Tench CR, et al. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci Biobehav Rev. 2022;136:104603. DOI:10.1016/j.neubiorev.2022.104603
20. Devoto F, Coricelli C, Paulesu E, Zapparoli L. Neural circuits mediating food cue-reactivity: Toward a new model shaping the interplay of internal and external factors. Front Nutr. 2022;9. DOI:10.3389/fnut.2022.954523
21. Steward T, Wierenga CE. Foreword to the special issue on the neuroscience of obesity and related disorders. Rev Endocr Metab Disord. 2022;23(4):679-81.
DOI:10.1007/s11154-022-09739-4
1 ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России, Томск, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
3 ФГБУ «Государственный научный центр “Институт иммунологии”» ФМБА России, Москва, Россия
*darvas_42@mail.ru
________________________________________________
Iuliia G. Samoilova1, Daria V. Podchinenova1, Mariia V. Matveeva1, Dmitry A. Kudlay2,3, Oxana A. Oleynik1, Ivan V. Tolmachev1, Irina S. Kaverina1, Tamara D. Vachadze1, Margarita A. Kovarenko1, Olga A. Loginova1
1 Siberian State Medical University, Tomsk, Russia;
2 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
3 National Research Center – Institute of Immunology, Moscow, Russia
*darvas_42@mail.ru