Клиническое значение уремического токсина индоксил сульфата и воспаления в развитии сосудистой кальцификации и кардиоваскулярных осложнений при хронической болезни почек С3–С5Д стадии
Клиническое значение уремического токсина индоксил сульфата и воспаления в развитии сосудистой кальцификации и кардиоваскулярных осложнений при хронической болезни почек С3–С5Д стадии
Дзгоева Ф.У., Ремизов О.В., Голоева В.Г., Икоева З.Р. Клиническое значение уремического токсина индоксил сульфата и воспаления в развитии сосудистой кальцификации и кардиоваскулярных осложнений при хронической болезни почек С3–С5Д стадии. Терапевтический архив. 2023;95(6):468–474. DOI: 10.26442/00403660.2023.06.202267
Dzgoeva FU, Remizov OV, Goloeva VG, Ikoeva ZR. Clinical significance of uremic toxin indoxyl sulfate and inflammation in the development of vascular calcification and cardiovascular complications in stage C3–C5D chronic kidney disease. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(6):468–474.
DOI: 10.26442/00403660.2023.06.202267
Клиническое значение уремического токсина индоксил сульфата и воспаления в развитии сосудистой кальцификации и кардиоваскулярных осложнений при хронической болезни почек С3–С5Д стадии
Дзгоева Ф.У., Ремизов О.В., Голоева В.Г., Икоева З.Р. Клиническое значение уремического токсина индоксил сульфата и воспаления в развитии сосудистой кальцификации и кардиоваскулярных осложнений при хронической болезни почек С3–С5Д стадии. Терапевтический архив. 2023;95(6):468–474. DOI: 10.26442/00403660.2023.06.202267
Dzgoeva FU, Remizov OV, Goloeva VG, Ikoeva ZR. Clinical significance of uremic toxin indoxyl sulfate and inflammation in the development of vascular calcification and cardiovascular complications in stage C3–C5D chronic kidney disease. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(6):468–474.
DOI: 10.26442/00403660.2023.06.202267
Цель. Уточнить роль уремического токсина индоксил сульфата (ИС) и воспаления в развитии кальцификации сосудов и кардиоваскулярных осложнений при хронической болезни почек (ХБП). Материалы и методы. Обследованы 115 пациентов в возрасте от 25 до 68 лет с ХБП стадии С3–С5Д. Сывороточную концентрацию ИС, интерлейкина-6 (ИЛ-6), фактора некроза опухоли (ФНО-α), тропонина I, паратгормона определяли методом иммуноферментного анализа с применением наборов фирм BluGene biotech (Shanghai, Китай), Cloud-Clone Corp. (США), ELISA Kit (Biomedica, Австрия). Результаты. Выявлено увеличение сывороточной концентрации ИС, ИЛ-6, ФНО-α, достоверно связанное с ухудшением функции почек и изменениями морфофункциональных показателей сердца и аорты. Заключение. Высокие концентрации ИС, ИЛ-6, ФНО-α, тесно связанные с нарастанием почечной недостаточности и кардиоваскулярных осложнений, свидетельствуют об их существенной роли в кальцификации сосудов, лежащей в основе поражения сердечно-сосудистой системы при ХБП.
Aim. To clarify the role of the uremic toxin indoxyl sulfate (IS) and inflammation in the development of vascular calcification and cardiovascular complications in chronic kidney disease (CKD). Materials and methods. One hundred fifteen patients aged 25 to 68 years with CKD stage C3–C5D were examined. Serum concentrations of IS, interleukin 6 (IL-6), tumor necrosis factor (TNF-α), troponin I, parathyroid hormone were determined by enzyme immunoassay using kits from BluGene biotech (Shanghai, China), Cloud-Clone Corp. (USA), ELISA Kit (Biomedica, Austria). Results. An increase in the serum concentration of IS, IL-6, TNF-α was revealed, which was significantly associated with a deterioration in renal function and changes in the morphological and functional parameters of the heart and aorta. Conclusion. High concentrations of IS, IL-6, TNF-α, which are closely associated with an increase in renal failure and cardiovascular complications, indicate their significant role in vascular calcification, which underlies the damage to the cardiovascular system in CKD.
Keywords: chronic kidney disease, indoxyl sulfate, interleukin-6, tumor necrosis factor-α, calcification of the heart and aorta
1. Villain C, Metzger M, Combe C, et al. Prevalence of atheromatous and non-atheromatous cardiovascular disease by age in chronic kidney disease. Nephrol Dial Transplant. 2020;35(5):827-36. DOI:10.1093/ndt/gfy277
2. Tian N, Yan Y, Chen N, et al. Relationship between gut microbiota and nutritional status in patients on peritoneal dialysis. Sci Rep. 2023;13(1):1572-83.
DOI:10.1038/s41598-023-27919-3
3. Wang H, Ainiwaer A, Song Y, et al. Perturbed gut microbiome and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11(1):3-11. DOI:10.1186/s40168-022-01443-4
4. Chao CT, Lin SH. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins (Basel). 2020;12(12):812-8. DOI:10.3390/toxins12120812
5. Fujii H, Goto S, Fukagawa M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins (Basel). 2018;10(5):202. DOI:10.3390/toxins10050202
6. Li F, Wang M, Wang J, et al. Alterations to the Gut Microbiota and Their Correlation With Inflammatory Factors in Chronic Kidney Disease. Front Cell Infect Microbiol. 2019;9:206. DOI:10.3389/fcimb.2019.00206
7. Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1-3):84-92. DOI:10.1159/000368940
8. Filipska I, Winiarska A, Knysak M, Stompór T. Contribution of Gut Microbiota-Derived Uremic Toxins to the Cardiovascular System Mineralization. Toxins (Basel). 2021;13(4):274.
DOI:10.3390/toxins13040274
9. Gao Y, Li Y, Duan X, et al. Research progress on the relationship between IS and kidney disease and its complications. Int Urol Nephrol. 2022;54(11):2881-90.
DOI:10.1007/s11255-022-03209-1
10. Koppe L, Soulage CO. The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney Int. 2022;102(4):728-39. DOI:10.1016/j.kint.2022.06.025
11. Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci. 2023;316:121414. DOI:10.1016/j.lfs.2023.121414.
12. Tourountzis T, Lioulios G, Fylaktou A, et al. Microbiome in Chronic Kidney Disease. Life (Basel). 2022;12(10):1513. DOI:10.3390/life12101513
13. Wang H, Ainiwaer A, Song Y, et al. Perturbed gut microbiome and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11(1):3. DOI:10.1186/s40168-022-01443-4
14. Mao ZH, Gao ZX, Liu DW, et al. Gut microbiota and its metabolites – molecular mechanisms and management strategies in diabetic kidney disease. Front Immunol. 2023;14:1124704. DOI:10.3389/fimmu.2023.1124704
15. Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel). 2020;12(9):590. DOI:10.3390/toxins12090590
16. Lun H, Yang W, Zhao S, et al. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. Microbiologyopen. 2019;8(4):e00678. DOI:10.1002/mbo3.678
17. Hobby GP, Karaduta O, Dusio GF, et al. Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol. 2019;316(6):F1211-7. DOI:10.1152/ajprenal.00298.2018
18. Rysz J, Franczyk B, Ławiński J, et al. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins (Basel). 2021;13(4):252. DOI:10.3390/toxins13040252
19. Bhargava S, Merckelbach E, Noels H, et al. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins (Basel). 2022;14(10):648. DOI:10.3390/toxins14100648
________________________________________________
1. Villain C, Metzger M, Combe C, et al. Prevalence of atheromatous and non-atheromatous cardiovascular disease by age in chronic kidney disease. Nephrol Dial Transplant. 2020;35(5):827-36. DOI:10.1093/ndt/gfy277
2. Tian N, Yan Y, Chen N, et al. Relationship between gut microbiota and nutritional status in patients on peritoneal dialysis. Sci Rep. 2023;13(1):1572-83.
DOI:10.1038/s41598-023-27919-3
3. Wang H, Ainiwaer A, Song Y, et al. Perturbed gut microbiome and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11(1):3-11. DOI:10.1186/s40168-022-01443-4
4. Chao CT, Lin SH. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins (Basel). 2020;12(12):812-8. DOI:10.3390/toxins12120812
5. Fujii H, Goto S, Fukagawa M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins (Basel). 2018;10(5):202. DOI:10.3390/toxins10050202
6. Li F, Wang M, Wang J, et al. Alterations to the Gut Microbiota and Their Correlation With Inflammatory Factors in Chronic Kidney Disease. Front Cell Infect Microbiol. 2019;9:206. DOI:10.3389/fcimb.2019.00206
7. Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1-3):84-92. DOI:10.1159/000368940
8. Filipska I, Winiarska A, Knysak M, Stompór T. Contribution of Gut Microbiota-Derived Uremic Toxins to the Cardiovascular System Mineralization. Toxins (Basel). 2021;13(4):274.
DOI:10.3390/toxins13040274
9. Gao Y, Li Y, Duan X, et al. Research progress on the relationship between IS and kidney disease and its complications. Int Urol Nephrol. 2022;54(11):2881-90.
DOI:10.1007/s11255-022-03209-1
10. Koppe L, Soulage CO. The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney Int. 2022;102(4):728-39. DOI:10.1016/j.kint.2022.06.025
11. Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci. 2023;316:121414. DOI:10.1016/j.lfs.2023.121414.
12. Tourountzis T, Lioulios G, Fylaktou A, et al. Microbiome in Chronic Kidney Disease. Life (Basel). 2022;12(10):1513. DOI:10.3390/life12101513
13. Wang H, Ainiwaer A, Song Y, et al. Perturbed gut microbiome and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11(1):3. DOI:10.1186/s40168-022-01443-4
14. Mao ZH, Gao ZX, Liu DW, et al. Gut microbiota and its metabolites – molecular mechanisms and management strategies in diabetic kidney disease. Front Immunol. 2023;14:1124704. DOI:10.3389/fimmu.2023.1124704
15. Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel). 2020;12(9):590. DOI:10.3390/toxins12090590
16. Lun H, Yang W, Zhao S, et al. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. Microbiologyopen. 2019;8(4):e00678. DOI:10.1002/mbo3.678
17. Hobby GP, Karaduta O, Dusio GF, et al. Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol. 2019;316(6):F1211-7. DOI:10.1152/ajprenal.00298.2018
18. Rysz J, Franczyk B, Ławiński J, et al. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins (Basel). 2021;13(4):252. DOI:10.3390/toxins13040252
19. Bhargava S, Merckelbach E, Noels H, et al. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins (Basel). 2022;14(10):648. DOI:10.3390/toxins14100648