Применение позитронной эмиссионной томографии в кардиологии в настоящее время выходит за рамки ишемической болезни сердца и охватывает все более широкий спектр некоронарогенной патологии, требующей своевременной экспертной диагностики, в том числе хроническую сердечную недостаточность любой этиологии, патологию клапанов, нарушения электрофизиологии сердца, кардиоонкологию. Подчеркивается важность развития технологий позитронной эмиссионной томографии в Российской Федерации, разработки и внедрения новых радиофармпрепаратов для диагностики патологических процессов сердечно-сосудистой системы, включая системное и локальное воспаление, в том числе связанное с атеросклерозом, нарушения перфузии и метаболизма миокарда, а также для решения специфических диагностических задач при коморбидной патологии.
The utility of positron emission tomography in cardiology currently goes beyond the ischemic heart disease and covers an increasingly wider range of non-coronary pathology, which requires timely expert diagnostics, including chronic heart disease of any etiology, valvular and electrophysiology disorders, cardiooncology. Authors emphasize the importance of the development of positron emission tomography technologies in the Russian Federation. This includes the development and implementation of new radiopharmaceuticals for the diagnosis of pathological processes of the cardiovascular system, systemic and local inflammation, including atherosclerosis, impaired perfusion and myocardial metabolism, and also for solving specific diagnostic tasks in comorbid pathology.
1. Nelson BJB, Andersson JD, Wuest F, et al. Good practices for (68)Ga radiopharmaceutical production. EJNMMI Radiopharm Chem. 2022;7(1):27. DOI:10.1186/s41181-022-00180-1
2. Patel KK, Spertus JA, Chan PS, et al. Extent of Myocardial Ischemia on Positron Emission Tomography and Survival Benefit With Early Revascularization. J Am Coll Cardiol. 2019;74(13):1645-54. DOI:10.1016/j.jacc.2019.07.055
3. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131(1):19-27. DOI:10.1161/CIRCULATIONAHA.114.011939
4. Kelly PJ, Camps-Renom P, Giannotti N, et al. Carotid Plaque Inflammation Imaged by <sup>18</sup> F-Fluorodeoxyglucose Positron Emission Tomography and Risk of Early Recurrent Stroke. Stroke. 2019;50(7):1766-73. DOI:10.1161/strokeaha.119.025422
5. Tawakol A, Ishai A, Takx RA, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet (London, England). 2017;389(10071):834-45. DOI:10.1016/S0140-6736(16)31714-7
6. Osborne MT, Radfar A, Hassan MZO, et al. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. Eur Heart J. 2020;41(6):772-82. DOI:10.1093/eurheartj/ehz820
7. Hoogeveen RM, Opstal TSJ, Kaiser Y, et al. PCSK9 Antibody Alirocumab Attenuates Arterial Wall Inflammation Without Changes in Circulating Inflammatory Markers. JACC: Cardiovasc Imaging. 2019;12(12):2571-73. DOI:10.1016/j.jcmg.2019.06.022
8. Hsue PY, Li D, Ma Y, et al. IL-1β Inhibition Reduces Atherosclerotic Inflammation in HIV Infection. J Am Coll Cardiol. 2018;72(22):2809-11. DOI:10.1016/j.jacc.2018.09.038
9. Cheng VY, Slomka PJ, Le Meunier L, et al. Coronary Arterial 18F-FDG Uptake by Fusion of PET and Coronary CT Angiography at Sites of Percutaneous Stenting for Acute Myocardial Infarction and Stable Coronary Artery Disease. J Nucl Med. 2012;53(4):575-83. DOI:10.2967/jnumed.111.097550
10. Creager MD, Hohl T, Hutcheson JD, et al. (18)F-Fluoride Signal Amplification Identifies Microcalcifications Associated With Atherosclerotic Plaque Instability in Positron Emission Tomography/Computed Tomography Images. Circ Cardiovasc Imaging. 2019;12(1):e007835-e35. DOI:10.1161/CIRCIMAGING.118.007835
11. Kwiecinski J, Dey D, Cadet S, et al. Peri-Coronary Adipose Tissue Density Is Associated With (18)F-Sodium Fluoride Coronary Uptake in Stable Patients With High-Risk Plaques. JACC Cardiovasc Imaging. 2019;12(10):2000-10. DOI:10.1016/j.jcmg.2018.11.032
12. Kwiecinski J, Dey D, Cadet S, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2020;21(1):58-66. DOI:10.1093/ehjci/jez152
13. Robson PM, Dweck MR, Trivieri MG, et al. Coronary Artery PET/MR Imaging: Feasibility, Limitations, and Solutions. JACC Cardiovasc Imaging. 2017;10(10 Pt. A):1103-12. DOI:10.1016/j.jcmg.2016.09.029
14. Jenkins WSA, Vesey AT, Stirrat C, et al. Cardiac α(V)β(3) integrin expression following acute myocardial infarction in humans. Heart (British Cardiac Society). 2017;103(8):607-15. DOI:10.1136/heartjnl-2016-310115
15. Thackeray JT, Hupe HC, Wang Y, et al. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. J Am Coll Cardiol. 2018;71(3):263-75. DOI:10.1016/j.jacc.2017.11.024
16. Ghosh N, Rimoldi OE, Beanlands RS, et al. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984‑95. DOI:10.1093/eurheartj/ehq361
17. Birnie DH, Nery PB, Ha AC, et al. Cardiac Sarcoidosis. J Am Coll Cardiol. 2016;68(4):411-21. DOI:10.1016/j.jacc.2016.03.605
18. Iwai K, Tachibana T, Takemura T, et al. Pathological studies on sarcoidosis autopsy. I. Epidemiological features of 320 cases in Japan. Acta Pathol Jpn. 1993;43(7‑8):372‑6. DOI:10.1111/j.1440-1827.1993.tb01148.x
19. Sekhri V, Sanal S, Delorenzo LJ, et al. Cardiac sarcoidosis: a comprehensive review. Arch Med Sci. 2011;7(4):546-54. DOI:10.5114/aoms.2011.24118
20. Wada K, Niitsuma T, Yamaki T, et al. Simultaneous cardiac imaging to detect inflammation and scar tissue with (18)F-fluorodeoxyglucose PET/MRI in cardiac sarcoidosis. J Nucl Cardiol. 2016;23(5):1180-82. DOI:10.1007/s12350-015-0348-4
21. Ahluwalia M, Pan S, Ghesani M, et al. A new era of imaging for diagnosis and management of cardiac sarcoidosis: Hybrid cardiac magnetic resonance imaging and positron emission tomography. J Nucl Cardiol. 2019;26(6):1996-2004. DOI:10.1007/s12350-019-01770-4
22. Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241-8. DOI:10.2967/jnumed.111.090662
23. Kim SJ, Pak K, Kim K. Diagnostic performance of F-18 FDG PET for detection of cardiac sarcoidosis; A systematic review and meta-analysis. J Nucl Cardiol. 2019. DOI:10.1007/s12350-018-01582-y
24. Vita T, Okada DR, Veillet-Chowdhury M, et al. Complementary Value of Cardiac Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography in the Assessment of Cardiac Sarcoidosis. Circ Cardiovasc Imaging. 2018;11(1):e007030. DOI:10.1161/CIRCIMAGING.117.007030
25. Divakaran S, Stewart GC, Lakdawala NK, et al. Diagnostic Accuracy of Advanced Imaging in Cardiac Sarcoidosis. Circ Cardiovasc Imaging. 2019;12(6):e008975. DOI:10.1161/CIRCIMAGING.118.008975
26. Norikane T, Yamamoto Y, Maeda Y, et al. Comparative evaluation of (18)F-FLT and (18)F-FDG for detecting cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis. EJNMMI Res. 2017;7(1):69. DOI:10.1186/s13550-017-0321-0
27. Lapa C, Reiter T, Kircher M, et al. Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI. Oncotarget. 2016;7(47):77807-14. DOI:10.18632/oncotarget.12799
28. Jain S, Sharma P, Dhull VS, et al. Lymphoma as a second malignancy in a patient with neuroendocrine tumor: mimicking dedifferentiation on dual-tracer PET/CT with 68Ga-DOTANOC and 18F-FDG. Clin Nucl Med. 2014;39(4):358-9. DOI:10.1097/RLU.0b013e31828e98c5
29. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329-36. DOI:10.1016/j.jacc.2013.09.022
30. Tuominen H, Haarala A, Tikkakoski A, et al. FDG-PET in possible cardiac sarcoidosis: Right ventricular uptake and high total cardiac metabolic activity predict cardiovascular events. J Nucl Cardiol. 2019. DOI:10.1007/s12350-019-01659-2
31. Laudicella R, Minutoli F, Baldari S. Prognostic insights of molecular imaging in cardiac sarcoidosis. J Nucl Cardiol. 2019. DOI:10.1007/s12350-019-01701-3
32. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21(5):925-39. DOI:10.1007/s12350-014-9901-9
33. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21(1):166-74. DOI:10.1007/s12350-013-9828-6
34. Blankstein R, Waller AH. Evaluation of Known or Suspected Cardiac Sarcoidosis. Circ Cardiovasc Imaging. 2016;9(3):e000867. DOI:10.1161/CIRCIMAGING.113.000867
35. Zelt JGE, deKemp RA, Rotstein BH, et al. Nuclear Imaging of the Cardiac Sympathetic Nervous System. JACC: Cardiovasc Imaging. 2020;13(4):1036-54. DOI:10.1016/j.jcmg.2019.01.042
36. Cao JM, Fishbein MC, Han JB, et al. Relationship Between Regional Cardiac Hyperinnervation and Ventricular Arrhythmia. Circulation. 2000;101(16):1960-9. DOI:10.1161/01.cir.101.16.1960
37. Fallavollita JA, Heavey BM, Luisi AJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141-9. DOI:10.1016/j.jacc.2013.07.096
38. Dickfeld T, Lei P, Dilsizian V, et al. Integration of Three-Dimensional Scar Maps for Ventricular Tachycardia Ablation With Positron Emission Tomography-Computed Tomography. JACC: Cardiovasc Imaging. 2008;1(1):73-82. DOI:10.1016/j.jcmg.2007.10.001
39. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075-128. DOI:10.1093/eurheartj/ehv319
40. Swart LE, Gomes A, Scholtens AM, et al. Improving the Diagnostic Performance of <sup>18</sup> F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography in Prosthetic Heart Valve Endocarditis. Circulation. 2018;138(14):1412-27. DOI:10.1161/circulationaha.118.035032
41. Wahadat AR, Tanis W, Swart LE, et al. Added value of (18)F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis. J Nucl Cardiol. 2021;28(5):2072-82. DOI:10.1007/s12350-019-01963-x
42. Calais J, Touati A, Grall N, et al. Diagnostic Impact of 18 F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography and White Blood Cell SPECT/Computed Tomography in Patients With Suspected Cardiac Implantable Electronic Device Chronic Infection. Circulation: Cardiovasc Imaging. 2019;12(7). DOI:10.1161/circimaging.117.007188
43. Dweck MR, Jones C, Joshi NV, et al. Assessment of Valvular Calcification and Inflammation by Positron Emission Tomography in Patients With Aortic Stenosis. Circulation. 2012;125(1):76-86. DOI:10.1161/circulationaha.111.051052
44. Dweck MR, Jenkins WSA, Vesey AT, et al. 18F-Sodium Fluoride Uptake Is a Marker of Active Calcification and Disease Progression in Patients With Aortic Stenosis. Circulation: Cardiovascular Imaging. 2014;7(2):371-78. DOI:10.1161/circimaging.113.001508
45. Pawade TA, Doris MK, Bing R, et al. Effect of Denosumab or Alendronic Acid on the Progression of Aortic Stenosis: A Double-Blind Randomized Controlled Trial. Circulation. 2021;143(25):2418-27. DOI:10.1161/CIRCULATIONAHA.121.053708
46. Rahbar K, Seifarth H, Schäfers M, et al. Differentiation of Malignant and Benign Cardiac Tumors Using <sup>18</sup>F-FDG PET/CT. J Nucl Med. 2012;53(6):856-63. DOI:10.2967/jnumed.111.095364
47. Laursen AH, Elming MB, Ripa RS, et al. Rubidium-82 positron emission tomography for detection of acute doxorubicin-induced cardiac effects in lymphoma patients. J Nucl Cardiol. 2018;27(5):1698-707. DOI:10.1007/s12350-018-1458-6
________________________________________________
1. Nelson BJB, Andersson JD, Wuest F, et al. Good practices for (68)Ga radiopharmaceutical production. EJNMMI Radiopharm Chem. 2022;7(1):27. DOI:10.1186/s41181-022-00180-1
2. Patel KK, Spertus JA, Chan PS, et al. Extent of Myocardial Ischemia on Positron Emission Tomography and Survival Benefit With Early Revascularization. J Am Coll Cardiol. 2019;74(13):1645-54. DOI:10.1016/j.jacc.2019.07.055
3. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131(1):19-27. DOI:10.1161/CIRCULATIONAHA.114.011939
4. Kelly PJ, Camps-Renom P, Giannotti N, et al. Carotid Plaque Inflammation Imaged by <sup>18</sup> F-Fluorodeoxyglucose Positron Emission Tomography and Risk of Early Recurrent Stroke. Stroke. 2019;50(7):1766-73. DOI:10.1161/strokeaha.119.025422
5. Tawakol A, Ishai A, Takx RA, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet (London, England). 2017;389(10071):834-45. DOI:10.1016/S0140-6736(16)31714-7
6. Osborne MT, Radfar A, Hassan MZO, et al. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. Eur Heart J. 2020;41(6):772-82. DOI:10.1093/eurheartj/ehz820
7. Hoogeveen RM, Opstal TSJ, Kaiser Y, et al. PCSK9 Antibody Alirocumab Attenuates Arterial Wall Inflammation Without Changes in Circulating Inflammatory Markers. JACC: Cardiovasc Imaging. 2019;12(12):2571-73. DOI:10.1016/j.jcmg.2019.06.022
8. Hsue PY, Li D, Ma Y, et al. IL-1β Inhibition Reduces Atherosclerotic Inflammation in HIV Infection. J Am Coll Cardiol. 2018;72(22):2809-11. DOI:10.1016/j.jacc.2018.09.038
9. Cheng VY, Slomka PJ, Le Meunier L, et al. Coronary Arterial 18F-FDG Uptake by Fusion of PET and Coronary CT Angiography at Sites of Percutaneous Stenting for Acute Myocardial Infarction and Stable Coronary Artery Disease. J Nucl Med. 2012;53(4):575-83. DOI:10.2967/jnumed.111.097550
10. Creager MD, Hohl T, Hutcheson JD, et al. (18)F-Fluoride Signal Amplification Identifies Microcalcifications Associated With Atherosclerotic Plaque Instability in Positron Emission Tomography/Computed Tomography Images. Circ Cardiovasc Imaging. 2019;12(1):e007835-e35. DOI:10.1161/CIRCIMAGING.118.007835
11. Kwiecinski J, Dey D, Cadet S, et al. Peri-Coronary Adipose Tissue Density Is Associated With (18)F-Sodium Fluoride Coronary Uptake in Stable Patients With High-Risk Plaques. JACC Cardiovasc Imaging. 2019;12(10):2000-10. DOI:10.1016/j.jcmg.2018.11.032
12. Kwiecinski J, Dey D, Cadet S, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2020;21(1):58-66. DOI:10.1093/ehjci/jez152
13. Robson PM, Dweck MR, Trivieri MG, et al. Coronary Artery PET/MR Imaging: Feasibility, Limitations, and Solutions. JACC Cardiovasc Imaging. 2017;10(10 Pt. A):1103-12. DOI:10.1016/j.jcmg.2016.09.029
14. Jenkins WSA, Vesey AT, Stirrat C, et al. Cardiac α(V)β(3) integrin expression following acute myocardial infarction in humans. Heart (British Cardiac Society). 2017;103(8):607-15. DOI:10.1136/heartjnl-2016-310115
15. Thackeray JT, Hupe HC, Wang Y, et al. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. J Am Coll Cardiol. 2018;71(3):263-75. DOI:10.1016/j.jacc.2017.11.024
16. Ghosh N, Rimoldi OE, Beanlands RS, et al. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984‑95. DOI:10.1093/eurheartj/ehq361
17. Birnie DH, Nery PB, Ha AC, et al. Cardiac Sarcoidosis. J Am Coll Cardiol. 2016;68(4):411-21. DOI:10.1016/j.jacc.2016.03.605
18. Iwai K, Tachibana T, Takemura T, et al. Pathological studies on sarcoidosis autopsy. I. Epidemiological features of 320 cases in Japan. Acta Pathol Jpn. 1993;43(7‑8):372‑6. DOI:10.1111/j.1440-1827.1993.tb01148.x
19. Sekhri V, Sanal S, Delorenzo LJ, et al. Cardiac sarcoidosis: a comprehensive review. Arch Med Sci. 2011;7(4):546-54. DOI:10.5114/aoms.2011.24118
20. Wada K, Niitsuma T, Yamaki T, et al. Simultaneous cardiac imaging to detect inflammation and scar tissue with (18)F-fluorodeoxyglucose PET/MRI in cardiac sarcoidosis. J Nucl Cardiol. 2016;23(5):1180-82. DOI:10.1007/s12350-015-0348-4
21. Ahluwalia M, Pan S, Ghesani M, et al. A new era of imaging for diagnosis and management of cardiac sarcoidosis: Hybrid cardiac magnetic resonance imaging and positron emission tomography. J Nucl Cardiol. 2019;26(6):1996-2004. DOI:10.1007/s12350-019-01770-4
22. Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241-8. DOI:10.2967/jnumed.111.090662
23. Kim SJ, Pak K, Kim K. Diagnostic performance of F-18 FDG PET for detection of cardiac sarcoidosis; A systematic review and meta-analysis. J Nucl Cardiol. 2019. DOI:10.1007/s12350-018-01582-y
24. Vita T, Okada DR, Veillet-Chowdhury M, et al. Complementary Value of Cardiac Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography in the Assessment of Cardiac Sarcoidosis. Circ Cardiovasc Imaging. 2018;11(1):e007030. DOI:10.1161/CIRCIMAGING.117.007030
25. Divakaran S, Stewart GC, Lakdawala NK, et al. Diagnostic Accuracy of Advanced Imaging in Cardiac Sarcoidosis. Circ Cardiovasc Imaging. 2019;12(6):e008975. DOI:10.1161/CIRCIMAGING.118.008975
26. Norikane T, Yamamoto Y, Maeda Y, et al. Comparative evaluation of (18)F-FLT and (18)F-FDG for detecting cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis. EJNMMI Res. 2017;7(1):69. DOI:10.1186/s13550-017-0321-0
27. Lapa C, Reiter T, Kircher M, et al. Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI. Oncotarget. 2016;7(47):77807-14. DOI:10.18632/oncotarget.12799
28. Jain S, Sharma P, Dhull VS, et al. Lymphoma as a second malignancy in a patient with neuroendocrine tumor: mimicking dedifferentiation on dual-tracer PET/CT with 68Ga-DOTANOC and 18F-FDG. Clin Nucl Med. 2014;39(4):358-9. DOI:10.1097/RLU.0b013e31828e98c5
29. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329-36. DOI:10.1016/j.jacc.2013.09.022
30. Tuominen H, Haarala A, Tikkakoski A, et al. FDG-PET in possible cardiac sarcoidosis: Right ventricular uptake and high total cardiac metabolic activity predict cardiovascular events. J Nucl Cardiol. 2019. DOI:10.1007/s12350-019-01659-2
31. Laudicella R, Minutoli F, Baldari S. Prognostic insights of molecular imaging in cardiac sarcoidosis. J Nucl Cardiol. 2019. DOI:10.1007/s12350-019-01701-3
32. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21(5):925-39. DOI:10.1007/s12350-014-9901-9
33. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21(1):166-74. DOI:10.1007/s12350-013-9828-6
34. Blankstein R, Waller AH. Evaluation of Known or Suspected Cardiac Sarcoidosis. Circ Cardiovasc Imaging. 2016;9(3):e000867. DOI:10.1161/CIRCIMAGING.113.000867
35. Zelt JGE, deKemp RA, Rotstein BH, et al. Nuclear Imaging of the Cardiac Sympathetic Nervous System. JACC: Cardiovasc Imaging. 2020;13(4):1036-54. DOI:10.1016/j.jcmg.2019.01.042
36. Cao JM, Fishbein MC, Han JB, et al. Relationship Between Regional Cardiac Hyperinnervation and Ventricular Arrhythmia. Circulation. 2000;101(16):1960-9. DOI:10.1161/01.cir.101.16.1960
37. Fallavollita JA, Heavey BM, Luisi AJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141-9. DOI:10.1016/j.jacc.2013.07.096
38. Dickfeld T, Lei P, Dilsizian V, et al. Integration of Three-Dimensional Scar Maps for Ventricular Tachycardia Ablation With Positron Emission Tomography-Computed Tomography. JACC: Cardiovasc Imaging. 2008;1(1):73-82. DOI:10.1016/j.jcmg.2007.10.001
39. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075-128. DOI:10.1093/eurheartj/ehv319
40. Swart LE, Gomes A, Scholtens AM, et al. Improving the Diagnostic Performance of <sup>18</sup> F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography in Prosthetic Heart Valve Endocarditis. Circulation. 2018;138(14):1412-27. DOI:10.1161/circulationaha.118.035032
41. Wahadat AR, Tanis W, Swart LE, et al. Added value of (18)F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis. J Nucl Cardiol. 2021;28(5):2072-82. DOI:10.1007/s12350-019-01963-x
42. Calais J, Touati A, Grall N, et al. Diagnostic Impact of 18 F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography and White Blood Cell SPECT/Computed Tomography in Patients With Suspected Cardiac Implantable Electronic Device Chronic Infection. Circulation: Cardiovasc Imaging. 2019;12(7). DOI:10.1161/circimaging.117.007188
43. Dweck MR, Jones C, Joshi NV, et al. Assessment of Valvular Calcification and Inflammation by Positron Emission Tomography in Patients With Aortic Stenosis. Circulation. 2012;125(1):76-86. DOI:10.1161/circulationaha.111.051052
44. Dweck MR, Jenkins WSA, Vesey AT, et al. 18F-Sodium Fluoride Uptake Is a Marker of Active Calcification and Disease Progression in Patients With Aortic Stenosis. Circulation: Cardiovascular Imaging. 2014;7(2):371-78. DOI:10.1161/circimaging.113.001508
45. Pawade TA, Doris MK, Bing R, et al. Effect of Denosumab or Alendronic Acid on the Progression of Aortic Stenosis: A Double-Blind Randomized Controlled Trial. Circulation. 2021;143(25):2418-27. DOI:10.1161/CIRCULATIONAHA.121.053708
46. Rahbar K, Seifarth H, Schäfers M, et al. Differentiation of Malignant and Benign Cardiac Tumors Using <sup>18</sup>F-FDG PET/CT. J Nucl Med. 2012;53(6):856-63. DOI:10.2967/jnumed.111.095364
47. Laursen AH, Elming MB, Ripa RS, et al. Rubidium-82 positron emission tomography for detection of acute doxorubicin-induced cardiac effects in lymphoma patients. J Nucl Cardiol. 2018;27(5):1698-707. DOI:10.1007/s12350-018-1458-6
Авторы
В.Б. Сергиенко, А.А. Аншелес*
ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия
*a.ansheles@gmail.com
________________________________________________
Vladimir B. Sergienko, Alexey A. Ansheles*
Chazov National Medical Research Center of Cardiology, Moscow, Russia
*a.ansheles@gmail.com