За последние десятилетия хроническая обструктивная болезнь легких (ХОБЛ) стала важнейшей проблемой общественного здравоохранения в связи с ростом заболеваемости и смертности. ХОБЛ характеризуется ограничением скорости воздушного потока из-за воспаления бронхиального дерева и ремоделирования мелких дыхательных путей. У 20–40% пациентов с ХОБЛ наблюдается эозинофильное воспаление дыхательных путей, как и при бронхиальной астме. Недавно показано, что эозинофильная ХОБЛ является отдельным заболеванием и связана с более выраженным ремоделированием дыхательных путей. Хотя роль эозинофилов в патогенезе ХОБЛ полностью не выяснена, уровень эозинофилов может использоваться при прогнозе и назначении кортикостероидов, причем их эффективность выше при эозинофилии. В настоящее время моноклональные антитела, направленные против интерлейкина-5, 4 и 13 или их рецепторов, проходят апробацию при Т2-эндотипе ХОБЛ. Данный обзор посвящен механизмам эозинофилии при ХОБЛ, использованию эозинофилов крови и мокроты в качестве биомаркера, а также целесообразности применения моноклональных антител при лечении эозинофильной ХОБЛ.
Over the past decades, chronic obstructive pulmonary disease (COPD) has become a major public health problem due to increasing morbidity and mortality. COPD is characterized by airflow limitation due to inflammation of the bronchial tree and remodeling of the small airways. In 20–40% of patients with COPD, eosinophilic inflammation of the airways is observed, as in bronchial asthma. Eosinophilic COPD has recently been shown to be a distinct disease and is associated with more pronounced airway remodeling. Although the role of eosinophils in the pathogenesis of COPD is not fully understood, the level of eosinophils can be used in the prognosis and administration of corticosteroids, and their effectiveness is higher in eosinophilia. Currently, monoclonal antibodies directed against interleukins (IL-5, IL-4 and IL-13) or their receptors are being tested in the T2 endotype of COPD. This review focuses on the mechanisms of eosinophilia in COPD, the use of blood and sputum eosinophils as a biomarker, and the advisability of using monoclonal antibodies in the treatment of eosinophilic COPD.
1. Ferrera MC, Labaki WW, Han MK. Advances in Chronic Obstructive Pulmonary Disease. Annu Rev Med. 2021;72:119-34. DOI:10.1146/annurev-med-080919-112707
2. Zysman M, Deslee G, Caillaud D, et al. Relationship between blood eosinophils, clinical characteristics, and mortality in patients with COPD. Int J Chronic Obstruct Pulm Dis. 2017;12:1819-24. DOI:10.2147/COPD.S129787
3. Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5:478-85. DOI:10.1513/pats.200802-014ET
4. George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 2016;7(1):34-51. DOI:10.1177/2040622315609251
5. Albertson TE, Chenoweth JA, Pearson SJ, Murin S. The pharmacological management of asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS). Expert Opin Pharmacother. 2020;21(2):213-31. DOI:10.1080/14656566.2019.1701656
6. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD) – differences and similarities. Mater Sociomed. 2012;24(2):100-5. DOI:10.5455/msm.2012.24.100-105
7. Brightling CE, McKenna S, Hargadon B, et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax. 2005;60(3):193-8. DOI:10.1136/thx.2004.032516
8. David B, Bafadhel M, Koenderman L, De Soyza A. Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait. Thorax. 2021;76(2):188‑95. DOI:10.1136/thoraxjnl-2020-215167
9. Heaney LG, Perez de Llano L, Al-Ahmad M, et al. Eosinophilic and noneosinophilic asthma: an expert consensus framework to characterise phenotypes in a global real-life severe asthma cohort. Chest. 2021;160(3):814-30. DOI:10.1016/j.chest.2021.04.013
10. Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med. 2015;3(6):435-42. DOI:10.1016/S2213-2600(15)00106-X
11. Weissler JC, Adams TN. Eosinophilic Chronic Obstructive Pulmonary Disease. Lung. 2021;199:589-95. DOI:10.1007/s00408-021-00492-0
12. Barrecheguren M, Esquinas C, Miravitlles M. The asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): opportunities and challenges. Curr Opin Pulm Med. 2015;21(1):74-9. DOI:10.1097/MCP.0000000000000118
13. Bateman ED, Reddel HK, van Zyl-Smit RN, Agusti A. The asthma-COPD overlap syndrome: towards a revised taxonomy of chronic airways diseases? Lancet Respir Med. 2015;3(9):719-28. DOI:10.1016/S2213-2600(15)00254-4
14. Varricchi G, Bagnasco D, Borriello F, et al. Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol. 2016;6(2):186-200. DOI:10.1097/ACI.0000000000000251
15. Smit JJ, Lukacs NW. A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol. 2006;533(1-3):277-88. DOI:10.1016/j.ejphar.2005.12.064
16. Saha S, Brightling CE. Eosinophilic airway inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(1):39-47. DOI:10.2147/copd.2006.1.1.39
17. Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. 2014;5:570. DOI:10.3389/fimmu.2014.00570
18. Barnes PJ. Inflammatory endotypes in COPD. Allergy. 2019;74(7):1249-56. DOI:10.1111/all.13760
19. Weissler JC. Eosinophilic lung disease. Am J Med Sci. 2017;354(4):339-49. DOI:10.1016/j.amjms.2017.03.020
20. Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651-9. DOI:10.1016/S0140-6736(12)60988-X
21. Roufosse F, Weller PF. Practical approach to the patient with hypereosinophilia. J Allergy Clin Immunol. 2010;126(1):39-44. DOI:10.1016/j.jaci.2010.04.011
22. Blumenthal KG, Youngster I, Rabideau DJ, et al. Peripheral blood eosinophilia and hypersensitivity reactions among patients receiving outpatient parenteral antibiotics. J Allergy Clin Immunol. 2015;136(5):1288-94.e1. DOI:10.1016/j.jaci.2015.04.005
23. Narendra DK, Hanania NA. Targeting IL-5 in COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:1045-51. DOI:10.2147/COPD.S155306
24. Bafadhel M, Pavord ID, Russell REK. Eosinophils in COPD: just another biomarker? Lancet Respir Med. 2017;5(9):747-59. DOI:10.1016/S2213-2600(17)30217-5
25. Bélanger M, Couillard S, Courteau J, et al. Eosinophil counts in first COPD hospitalizations: a comparison of health service utilization. Int J Chron Obstruct Pulmon Dis.
2018;13:3045-54. DOI:10.2147/COPD.S170743
26. Vedel-Krogh S, Nielsen SF, Lange P, et al. Blood eosinophils and exacerbations in chronic obstructive pulmonary disease. The Copenhagen general population study. Am J Respir Crit Care Med. 2016;193(9):965-74. DOI:10.1164/rccm.201509-1869OC
27. Barnes NC, Sharma R, Lettis S, Calverley PMA. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur Respir J. 2016;47(5):1374-82. DOI:10.1183/13993003.01370-2015
28. Shin SH, Park HY, Kang D, et al. Serial blood eosinophils and clinical outcome in patients with chronic obstructive pulmonary disease. Respir Res. 2018;19(1):134. DOI:10.1186/s12931-018-0840-x
29. Hastie AT, Martinez FJ, Curtis JL, et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5(12):956-67. DOI:10.1016/S2213-2600(17)30432-0
30. Schleich F, Brusselle G, Louis R, et al. The Belgian Severe Asthma Registry (BSAR). Respir Med. 2014;108(12):1723-32. DOI:10.1016/j.rmed.2014.10.007
31. Pavord ID, Lettis S, Locantore N, et al. Blood eosinophils and inhaled corticosteroid/longacting β-2 agonist efficacy in COPD. Thorax. 2016;71(2):118‑25.
DOI:10.1136/thoraxjnl-2015-207021
32. Lipson DA, Barnhart F, Brealey N, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378(18):1671-80. DOI:10.1056/NEJMoa1713901
33. Watz H, Tetzlaff K, Wouters EF, et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: a post-hoc analysis of the WISDOM trial. Lancet Respir Med. 2016;4(5):390-8. DOI:10.1016/S2213-2600(16)00100-4
34. Chalmers JD, Laska IF, Franssen FME, et al. Withdrawal of inhaled corticosteroids in COPD: a European Respiratory Society guideline. Eur Respir J. 2020;55(6):2000351. DOI:10.1183/13993003.00351-2020
35. Harries TH, Rowland V, Corrigan CJ, et al. Blood eosinophil count, a marker of inhaled corticosteroid effectiveness in preventing COPD exacerbations in post-hoc RCT and observational studies: systematic review and meta-analysis. Respir Res. 2020;21(1):3. DOI:10.1186/s12931-019-1268-7
36. Liu T, Xiang ZJ, Hou XM, et al. Blood eosinophil count-guided corticosteroid therapy and as a prognostic biomarker of exacerbations of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Chronic Dis. 2021;12:20406223211028768. DOI:10.1177/20406223211028768
37. Pavord I, Lettis S, Anzueto A, Barnes N. Blood eosinophil count and pneumonia risk in patients with chronic obstructive pulmonary disease: a patient-level meta-analysis. Lancet Respir Med. 2016;4(9):731-41. DOI:10.1016/S2213-2600(16)30148-5
38. Stolz D, Miravitlles M. The right treatment for the right patient with COPD: lessons from the IMPACT trial. Eur Respir J. 2020;55(5):2000881. DOI:10.1183/13993003.00881-2020
39. Brusselle G, Pavord ID, Landis S, et al. Blood eosinophil levels as a biomarker in COPD. Respir Med. 2018;138:21-31. DOI:10.1016/j.rmed.2018.03.016
40. Bafadhel M, Davies L, Calverley PM, et al. Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis. Eur Respir J. 2014;44(3):789‑91. DOI:10.1183/09031936.00062614
41. Sivapalan P, Lapperre TS, Janner J, et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): a multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir Med. 2019;7(8):699-709. DOI:10.1016/S2213-2600(19)30176-6
42. Ortega HG, Yancey SW, Mayer B, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016;4(7):549-56. DOI:10.1016/S2213-2600(16)30031-5
43. Laviolette M, Gossage DL, Gauvreau G, et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132(5):1086-96.e5. DOI:10.1016/j.jaci.2013.05.020
44. Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017;377(17):1613-29. DOI:10.1056/NEJMoa1708208
45. Criner GJ, Celli BR, Singh D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir Med. 2020;8:158-70. DOI:10.1016/S2213-2600(19)30338-8
46. Donovan T, Milan SJ, Wang R, et al. Anti-IL-5 therapies for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2020;12:CD013432. DOI:10.1002/14651858.CD013432.pub2
47. Wenzel SE. Emergence of biomolecular pathways to define novel asthma phenotypes. Type-2 immunity and beyond. Am J Respir Cell Mol Biol. 2016;55(1):1‑4. DOI:10.1165/rcmb.2016-0141PS
________________________________________________
1. Ferrera MC, Labaki WW, Han MK. Advances in Chronic Obstructive Pulmonary Disease. Annu Rev Med. 2021;72:119-34. DOI:10.1146/annurev-med-080919-112707
2. Zysman M, Deslee G, Caillaud D, et al. Relationship between blood eosinophils, clinical characteristics, and mortality in patients with COPD. Int J Chronic Obstruct Pulm Dis. 2017;12:1819-24. DOI:10.2147/COPD.S129787
3. Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5:478-85. DOI:10.1513/pats.200802-014ET
4. George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 2016;7(1):34-51. DOI:10.1177/2040622315609251
5. Albertson TE, Chenoweth JA, Pearson SJ, Murin S. The pharmacological management of asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS). Expert Opin Pharmacother. 2020;21(2):213-31. DOI:10.1080/14656566.2019.1701656
6. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD) – differences and similarities. Mater Sociomed. 2012;24(2):100-5. DOI:10.5455/msm.2012.24.100-105
7. Brightling CE, McKenna S, Hargadon B, et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax. 2005;60(3):193-8. DOI:10.1136/thx.2004.032516
8. David B, Bafadhel M, Koenderman L, De Soyza A. Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait. Thorax. 2021;76(2):188‑95. DOI:10.1136/thoraxjnl-2020-215167
9. Heaney LG, Perez de Llano L, Al-Ahmad M, et al. Eosinophilic and noneosinophilic asthma: an expert consensus framework to characterise phenotypes in a global real-life severe asthma cohort. Chest. 2021;160(3):814-30. DOI:10.1016/j.chest.2021.04.013
10. Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med. 2015;3(6):435-42. DOI:10.1016/S2213-2600(15)00106-X
11. Weissler JC, Adams TN. Eosinophilic Chronic Obstructive Pulmonary Disease. Lung. 2021;199:589-95. DOI:10.1007/s00408-021-00492-0
12. Barrecheguren M, Esquinas C, Miravitlles M. The asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): opportunities and challenges. Curr Opin Pulm Med. 2015;21(1):74-9. DOI:10.1097/MCP.0000000000000118
13. Bateman ED, Reddel HK, van Zyl-Smit RN, Agusti A. The asthma-COPD overlap syndrome: towards a revised taxonomy of chronic airways diseases? Lancet Respir Med. 2015;3(9):719-28. DOI:10.1016/S2213-2600(15)00254-4
14. Varricchi G, Bagnasco D, Borriello F, et al. Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol. 2016;6(2):186-200. DOI:10.1097/ACI.0000000000000251
15. Smit JJ, Lukacs NW. A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol. 2006;533(1-3):277-88. DOI:10.1016/j.ejphar.2005.12.064
16. Saha S, Brightling CE. Eosinophilic airway inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(1):39-47. DOI:10.2147/copd.2006.1.1.39
17. Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. 2014;5:570. DOI:10.3389/fimmu.2014.00570
18. Barnes PJ. Inflammatory endotypes in COPD. Allergy. 2019;74(7):1249-56. DOI:10.1111/all.13760
19. Weissler JC. Eosinophilic lung disease. Am J Med Sci. 2017;354(4):339-49. DOI:10.1016/j.amjms.2017.03.020
20. Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651-9. DOI:10.1016/S0140-6736(12)60988-X
21. Roufosse F, Weller PF. Practical approach to the patient with hypereosinophilia. J Allergy Clin Immunol. 2010;126(1):39-44. DOI:10.1016/j.jaci.2010.04.011
22. Blumenthal KG, Youngster I, Rabideau DJ, et al. Peripheral blood eosinophilia and hypersensitivity reactions among patients receiving outpatient parenteral antibiotics. J Allergy Clin Immunol. 2015;136(5):1288-94.e1. DOI:10.1016/j.jaci.2015.04.005
23. Narendra DK, Hanania NA. Targeting IL-5 in COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:1045-51. DOI:10.2147/COPD.S155306
24. Bafadhel M, Pavord ID, Russell REK. Eosinophils in COPD: just another biomarker? Lancet Respir Med. 2017;5(9):747-59. DOI:10.1016/S2213-2600(17)30217-5
25. Bélanger M, Couillard S, Courteau J, et al. Eosinophil counts in first COPD hospitalizations: a comparison of health service utilization. Int J Chron Obstruct Pulmon Dis.
2018;13:3045-54. DOI:10.2147/COPD.S170743
26. Vedel-Krogh S, Nielsen SF, Lange P, et al. Blood eosinophils and exacerbations in chronic obstructive pulmonary disease. The Copenhagen general population study. Am J Respir Crit Care Med. 2016;193(9):965-74. DOI:10.1164/rccm.201509-1869OC
27. Barnes NC, Sharma R, Lettis S, Calverley PMA. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur Respir J. 2016;47(5):1374-82. DOI:10.1183/13993003.01370-2015
28. Shin SH, Park HY, Kang D, et al. Serial blood eosinophils and clinical outcome in patients with chronic obstructive pulmonary disease. Respir Res. 2018;19(1):134. DOI:10.1186/s12931-018-0840-x
29. Hastie AT, Martinez FJ, Curtis JL, et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5(12):956-67. DOI:10.1016/S2213-2600(17)30432-0
30. Schleich F, Brusselle G, Louis R, et al. The Belgian Severe Asthma Registry (BSAR). Respir Med. 2014;108(12):1723-32. DOI:10.1016/j.rmed.2014.10.007
31. Pavord ID, Lettis S, Locantore N, et al. Blood eosinophils and inhaled corticosteroid/longacting β-2 agonist efficacy in COPD. Thorax. 2016;71(2):118‑25.
DOI:10.1136/thoraxjnl-2015-207021
32. Lipson DA, Barnhart F, Brealey N, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378(18):1671-80. DOI:10.1056/NEJMoa1713901
33. Watz H, Tetzlaff K, Wouters EF, et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: a post-hoc analysis of the WISDOM trial. Lancet Respir Med. 2016;4(5):390-8. DOI:10.1016/S2213-2600(16)00100-4
34. Chalmers JD, Laska IF, Franssen FME, et al. Withdrawal of inhaled corticosteroids in COPD: a European Respiratory Society guideline. Eur Respir J. 2020;55(6):2000351. DOI:10.1183/13993003.00351-2020
35. Harries TH, Rowland V, Corrigan CJ, et al. Blood eosinophil count, a marker of inhaled corticosteroid effectiveness in preventing COPD exacerbations in post-hoc RCT and observational studies: systematic review and meta-analysis. Respir Res. 2020;21(1):3. DOI:10.1186/s12931-019-1268-7
36. Liu T, Xiang ZJ, Hou XM, et al. Blood eosinophil count-guided corticosteroid therapy and as a prognostic biomarker of exacerbations of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Chronic Dis. 2021;12:20406223211028768. DOI:10.1177/20406223211028768
37. Pavord I, Lettis S, Anzueto A, Barnes N. Blood eosinophil count and pneumonia risk in patients with chronic obstructive pulmonary disease: a patient-level meta-analysis. Lancet Respir Med. 2016;4(9):731-41. DOI:10.1016/S2213-2600(16)30148-5
38. Stolz D, Miravitlles M. The right treatment for the right patient with COPD: lessons from the IMPACT trial. Eur Respir J. 2020;55(5):2000881. DOI:10.1183/13993003.00881-2020
39. Brusselle G, Pavord ID, Landis S, et al. Blood eosinophil levels as a biomarker in COPD. Respir Med. 2018;138:21-31. DOI:10.1016/j.rmed.2018.03.016
40. Bafadhel M, Davies L, Calverley PM, et al. Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis. Eur Respir J. 2014;44(3):789‑91. DOI:10.1183/09031936.00062614
41. Sivapalan P, Lapperre TS, Janner J, et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): a multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir Med. 2019;7(8):699-709. DOI:10.1016/S2213-2600(19)30176-6
42. Ortega HG, Yancey SW, Mayer B, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016;4(7):549-56. DOI:10.1016/S2213-2600(16)30031-5
43. Laviolette M, Gossage DL, Gauvreau G, et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132(5):1086-96.e5. DOI:10.1016/j.jaci.2013.05.020
44. Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017;377(17):1613-29. DOI:10.1056/NEJMoa1708208
45. Criner GJ, Celli BR, Singh D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir Med. 2020;8:158-70. DOI:10.1016/S2213-2600(19)30338-8
46. Donovan T, Milan SJ, Wang R, et al. Anti-IL-5 therapies for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2020;12:CD013432. DOI:10.1002/14651858.CD013432.pub2
47. Wenzel SE. Emergence of biomolecular pathways to define novel asthma phenotypes. Type-2 immunity and beyond. Am J Respir Cell Mol Biol. 2016;55(1):1‑4. DOI:10.1165/rcmb.2016-0141PS
Авторы
Э.Х. Анаев*
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
*el_anaev@hotmail.com
________________________________________________
Eldar Kh. Anaev*
Pirogov Russian National Research Medical University, Moscow, Russia
*el_anaev@hotmail.com