Пятилетняя динамика антигипертензивного эффекта и адренореактивности эритроцитов после радиочастотной симпатической денервации почечных артерий у пациентов с резистентной артериальной гипертонией
Пятилетняя динамика антигипертензивного эффекта и адренореактивности эритроцитов после радиочастотной симпатической денервации почечных артерий у пациентов с резистентной артериальной гипертонией
Реброва Т.Ю., Фальковская А.Ю., Афанасьев С.А., Мордовин В.Ф., Зюбанова И.В., Муслимова Э.Ф. Пятилетняя динамика антигипертензивного эффекта и адренореактивности эритроцитов после радиочастотной симпатической денервации почечных артерий у пациентов с резистентной артериальной гипертонией. Терапевтический архив. 2023;95(9):757–762. DOI: 10.26442/00403660.2023.09.202374
Rebrova TYu, Falkovskaya AYu, Afanasiev SA, Mordovin VF, Zubanova IV, Muslimova EF. Five-year dynamics adrenergic reactivity of erythrocytes after radio-frequency sympathic denervation of renal arteries in patients with resistant arterial hypertension. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(9):757–762.
DOI: 10.26442/00403660.2023.09.202374
Пятилетняя динамика антигипертензивного эффекта и адренореактивности эритроцитов после радиочастотной симпатической денервации почечных артерий у пациентов с резистентной артериальной гипертонией
Реброва Т.Ю., Фальковская А.Ю., Афанасьев С.А., Мордовин В.Ф., Зюбанова И.В., Муслимова Э.Ф. Пятилетняя динамика антигипертензивного эффекта и адренореактивности эритроцитов после радиочастотной симпатической денервации почечных артерий у пациентов с резистентной артериальной гипертонией. Терапевтический архив. 2023;95(9):757–762. DOI: 10.26442/00403660.2023.09.202374
Цель. Изучить исходное состояние адренореактивности, пятилетнюю динамику показателя β-адренореактивности мембран эритроцитов (β-АРМ) и проявление антигипертензивного эффекта процедуры радиочастотной деструкции симпатических структур почечной артерии у пациентов с резистентной артериальной гипертонией. Материалы и методы. В анализ включили 42 пациентов с резистентной артериальной гипертонией. Процедуру ренальной денервации (РД) почек выполняли путем эндоваскулярной билатеральной транскатетерной радиочастотной аблации почечных артерий. Исследование суточного мониторирования артериального давления (АД) и определение β-АРМ по изменению осморезистентности эритроцитарных мембран проводили исходно, через 1 нед, 6 мес, 1, 2, 3 и 5 лет после РД. Пациенты ретроспективно на сроке наблюдения 6 мес после проведения РД распределены на респондеров (снижение АД на 10 мм рт. ст. и более) и нереспондеров (снижение АД менее 10 мм рт. ст.). Результаты. Спустя 6 мес после РД число респондеров составило 28 (66,7%) человек, через 5 лет – 31 (73,8%) человек. На момент включения в исследование медиана показателя β-АРМ в группе нереспондеров оказалась незначимо выше, чем в группе респондеров. По истечении 6 мес после проведения процедуры РД показатель β-АРМ в группе нереспондеров оказался значимо ниже, чем в группе респондеров (p=0,043). При дальнейшем наблюдении в группе респондеров отмечено увеличение медианы β-АРМ, которое достигало значимых различий относительно исходных значений в группе на сроках наблюдения 1 год (p=0,036) и 5 лет (p=0,004) после РД. Изменение показателя β-АРМ в группе нереспондеров носило волнообразный характер, изменения не достигали критериев значимости. Заключение. Проведение РД в 73,8% случаев сопровождается стабильным в течение 5 лет наблюдения антигипертензивным ответом и повышением β-АРМ, что может свидетельствовать о реализации компенсаторных механизмов в условиях возрастающей активности симпатоадреналовой системы в ответ на снижение АД.
Aim. To study the initial state of adrenergic reactivity and the five-year dynamics of the beta-adrenergic reactivity index of erythrocyte membranes and the manifestation of the antihypertensive effect of the procedure for radiofrequency destruction of sympathetic structures of the renal artery in patients with resistant arterial hypertension. Materials and methods. The analysis included 42 patients with resistant arterial hypertension. The renal denervation (RD) procedure of the kidneys was performed by endovascular bilateral transcatheter radiofrequency ablation of the renal arteries. The study of 24-hour blood pressure monitoring (BPM) and the determination of β-adrenoreactivity of erythrocytes (β-ARM) by changes in the osmoresistance of erythrocyte membranes were performed initially, 1 week, 6 months, 1, 2, 3 and 5 years after RD. Patients retrospectively, at a follow-up period of 6 months after RD, were divided into responders (decrease in blood pressure by 10 mm Hg or more) and non-responders (decrease in blood pressure less than 10 mm Hg). Results. 6 months after the RD, the number of responders was 28 (66.7%) people, after 5 years – 31 (73.8%) people. At the time of inclusion in the study, the median β-ARM in the group of non-responders was not significantly higher than in the group of responders. After 6 months after the RD procedure, the β-ARM indicator in the non-responder group was significantly lower than in the responder group (p=0.043). With further follow-up in the group of responders, an increase in the median β-ARM was noted, which reached significant differences relative to the baseline values in the group at follow-up periods of 1 year (p=0.036) and 5 years (p=0.004) after RD. The change in the β-ARM indicator in the non-responder group was wavy in nature, the changes did not reach the significance criteria. Conclusion. Renal denervation in 73.8% of cases is accompanied by a stable antihypertensive response for 5 years of observation and an increase in β-ARM, which may indicate the implementation of compensatory mechanisms in conditions of increasing activity of the sympathoadrenal system in response to a decrease in blood pressure.
Keywords: β-adrenergic reactivity of erythrocyte membranes, resistant arterial hypertension, sympathetic denervation of the kidneys, radiofrequency ablation
1. Murray CJ, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223-49. DOI:10.1016/S0140-6736(20)30752-2
2. Hering D, Trzebski A, Narkiewicz K. Recent advances in the pathophysiology of arterial hypertension: potential implications for clinical practice. Pol Arch Intern Med.
2017;127(3):195-204. DOI:10.20452/pamw.3971
3. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10(5):457‑66. DOI:10.1016/j.jash.2016.02.015
4. Агаева Р.А., Данилов Н.М., Щелкова Г.В., и др. Новые возможности ренальной денервации. Терапевтический архив. 2020;92(6):84‑8 [Ageeva RA, Danilov NM, Shekova GV, et al. New opportunities of renal denervation. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(6):84-8 (in Russian)]. DOI:10.26442/00403660.2020.06.000588
5. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275-81. DOI:10.1016/s0140-6736(09)60566-3
6. Veiga AC, Milanez MIO, Ferreira GR, et al. Selective afferent renal denervationmitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J Hypertens. 2020;38(4):765-73. DOI:10.1097/HJH.0000000000002304
7. Goldschmeding R, Vink A, Weggemans C, et al. Limited destruction of renal nerves after catheter-based renal denervation: results of a human case study. Nephrol Dial Transplant. 2014;29(8):1608-10. DOI:10.1093/ndt/gfu192
8. Dobrowolski LC, Eeftinck Schattenkerk DW, Krediet CTP, et al. Renal sympathetic nerve activity after catheter-based renal denervation. EJNMMI Res. 2018;8(1):8.
DOI:10.1186/s13550-018-0360-1
9. Brinkmann J, Heusser K, Schmidt BM, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult to control hypertensive patients: prospective case series. Hypertension. 2012;60:1485-90. DOI:10.1161/HYPERTENSIONAHA.112.201186
10. Nishi EE, Lopes NR, Gomes GN, et al. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res. 2019;42(5):628-40. DOI:10.1038/s41440-018-0171-9
11. Grassi G, Seravalle G, Brambilla G, et al. Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension. 2015;65(6):1209-16. DOI:10.1161/HYPERTENSIONAHA.114.04823
12. Tsioufis C, Dimitriadis K, Kasiakogias A, et al. Effects оf multielectrode renal denervation on elevated sympathetic nerve activity and insulin resistance in metabolic syndrome. J Hypertens. 2017;35(5):1100-8. DOI:10.1097/HJH.0000000000001262
13. Стрюк Р.И., Длусская И.Г. Адренореактивность и сердечно-сосудистая система. М.: Медицина, 2003 [Striuk RI, Dlusskaia IG. Adrenoreaktivnost i serdechno-sosudistaia sistema. Moscow: Meditsina, 2003 (in Russian)].
14. Воробьева Д.А., Реброва Т.Ю., Афанасьев С.А., и др. Сравнительный анализ адренореактивности эритроцитов у пациентов с инфарктом миокарда в зависимости от выраженности коронарной обструкции. Российский кардиологический журнал. 2020;25(5):3735 [Vorobyova DA, Rebrova TYu, Afanasyev SA, et al. Comparative analysis of adrenergic reactivity of erythrocytes in patients with myocardial infarction depending on the severity of coronary obstruction. Russian Journal of Cardiology. 2020;25(5):3735 (in Russian)]. DOI:10.15829/1560-4071-2020-3735
15. Гарганеева А.А., Александренко В.А., Кужелева Е.А., Реброва Т.Ю. Бета-адренореактивность эритроцитов и прогрессирование хронической сердечной недостаточности у пациентов, перенесших инфаркт миокарда. Российский кардиологический журнал. 2020;25(1):3407 [Garganeeva AA, Aleksandrenko VA, Kuzheleva EA, et al. Beta-adrenergic reactivity of erythrocytes and the progression of heart failure in patients after myocardial infarction. Russian Journal of Cardiology. 2020;25(1):3407 (in Russian)].
DOI:10.15829/1560-4071-2020-1-3407
16. Реброва Т.Ю., Муслимова Э.Ф., Александренко В.А., и др. Динамика адренореактивности после перенесенного инфаркта миокарда: годичное наблюдение. Терапевтический архив. 2021;93(1):44-8 [Rebrova TYu, Muslimova EF, Aleksandrenko VA, et al. Dynamics of adrenergic reactivity after transfer of myocardial infarction: annual observation. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(1):44-8 (in Russian)]. DOI:10.26442/00403660.2021.01.200592
17. Борисова Е.В., Афанасьев С.А., Реброва Т.Ю., и др. Изменение адренореактивности у пациентов с пароксизмальной формой фибрилляции предсердий на фоне приема соталола в зависимости от тонуса вегетативной нервной системы. Терапевтический архив. 2016;88(1):35-9 [Borisova EV, Afanasev SA, Rebrova TYu, et al. Changes in adrenoreactivity in patients with paroxysmal atrial fibrillation while taking sotalol, depending on the tone of the autonomic nervous system. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(1):35-9 (in Russian)]. DOI:10.17116/terarkh201688135-39
18. Зюбанова И.В., Фальковская А.Ю., Мордовин В.Ф., и др. Особенности изменения бета-адренореактивности мембран эритроцитов у больных резистентной артериальной гипертензией после ренальной денервации, взаимосвязь с антигипертензивной и кардиопротективной эффективностью вмешательства. Кардиология. 2021;61(8):32-9 [Zyubanova IV, Falkovskaya AYu, Mordovin VF, et al. Erythrocyte Membranes Beta-Adrenoreactivity Changes After Renal Denervation in Patients With Resistant Hypertension, Relationship With Antihypertensive and Cardioprotective Intervention Efficacy. Kardiologiia. 2021;61(8):32-9 (in Russian)]. DOI:10.18087/cardio.2021.8.n1556
19. Hering D, Trzebski A, Narkiewicz K. Recent advances in the pathophysiology of arterial hypertension: potential implications for clinical practice. Pol Arch Intern Med.
2017;127(3):195-204. DOI:10.20452/pamw.3971
20. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10(5):457‑66. DOI:10.1016/j.jash.2016.02.015
21. Реброва Т.Ю., Рипп Т.М., Афанасьев С.А., и др. Возможность оценки эффективности симпатической денервации почечных артерий при резистентной артериальной гипертонии в ранние сроки после проведения радиочастотной абляции. Терапевтический архив. 2016;88(8):10-3 [Rebrova TYu, Ripp TM, Afanasiev SA, et al. Possibility of evaluating the effectiveness of renal artery sympathetic denervation in resistant hypertension early after radiofrequency ablation. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(8):10-3 (in Russian)]. DOI:10.17116/terarkh201688810-13
22. Рипп Т.М., Реброва Т.Ю., Мордовин В.Ф., и др. Критерии отбора больных с резистентной артериальной гипертонией для симпатической денервации почек. Терапевтический архив. 2016;88(8):14‑8 [Ripp TM, Rebrova TYu, Mordovin VF, et al. Criteria for selecting patients with resistant hypertension for a renal sympathetic denervation. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(8):14-8 (in Russian)]. DOI:10.17116/terarkh201688814-18
23. Symplicity HTN-2 Investigators; Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903-9. DOI:10.1016/S0140-6736(10)62039-9
24. Dasgupta I, Sharp ASP. Renal sympathetic denervation for treatment of hypertension: where are we now in 2019? Curr Opin Nephrol Hypertens. 2019;28(5):498-506. DOI:10.1097/MNH.0000000000000532
25. Гапон Л.И., Микова Е.В., Криночкин Д.В., и др. Ренальная денервация почечных артерий при резистентной артериальной гипертензии: клинический и органопротективный эффект. Системные гипертензии. 2021;18(3):153-60 [Gapon LI, Mikova EV, Krinochkin DV, et al. Renal artery denervation in patients with resistant arterial hypertension: clinical and organ-protective effect. Systemic Hypertension. 2021;18(3):153-60 (in Russian)]. DOI:10.26442/2075082X.2021.3.201090
26. Ионов М.В., Емельянов И.В., Юдина Ю.С., и др. Результаты длительного проспективного наблюдения пациентов с резистентной артериальной гипертензией, прошедших процедуру радиочастотной аблации симпатических почечных нервов. Артериальная гипертензия. 2021;27(3):318-32 [Ionov MV, Emelyanov IV, Yudina YuS, et al. Renal sympathetic denervation in patients with resistant hypertension. Results of long-term prospective follow-up. Arterial Hypertension. 2021;27(3):318-32 (in Russian)].
DOI:10.18705/1607-419X-2021-27-3-318-332
________________________________________________
1. Murray CJ, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223-49. DOI:10.1016/S0140-6736(20)30752-2
2. Hering D, Trzebski A, Narkiewicz K. Recent advances in the pathophysiology of arterial hypertension: potential implications for clinical practice. Pol Arch Intern Med.
2017;127(3):195-204. DOI:10.20452/pamw.3971
3. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10(5):457‑66. DOI:10.1016/j.jash.2016.02.015
4. Ageeva RA, Danilov NM, Shekova GV, et al. New opportunities of renal denervation. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(6):84-8 (in Russian). DOI:10.26442/00403660.2020.06.000588
5. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275-81. DOI:10.1016/s0140-6736(09)60566-3
6. Veiga AC, Milanez MIO, Ferreira GR, et al. Selective afferent renal denervationmitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J Hypertens. 2020;38(4):765-73. DOI:10.1097/HJH.0000000000002304
7. Goldschmeding R, Vink A, Weggemans C, et al. Limited destruction of renal nerves after catheter-based renal denervation: results of a human case study. Nephrol Dial Transplant. 2014;29(8):1608-10. DOI:10.1093/ndt/gfu192
8. Dobrowolski LC, Eeftinck Schattenkerk DW, Krediet CTP, et al. Renal sympathetic nerve activity after catheter-based renal denervation. EJNMMI Res. 2018;8(1):8.
DOI:10.1186/s13550-018-0360-1
9. Brinkmann J, Heusser K, Schmidt BM, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult to control hypertensive patients: prospective case series. Hypertension. 2012;60:1485-90. DOI:10.1161/HYPERTENSIONAHA.112.201186
10. Nishi EE, Lopes NR, Gomes GN, et al. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res. 2019;42(5):628-40. DOI:10.1038/s41440-018-0171-9
11. Grassi G, Seravalle G, Brambilla G, et al. Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension. 2015;65(6):1209-16. DOI:10.1161/HYPERTENSIONAHA.114.04823
12. Tsioufis C, Dimitriadis K, Kasiakogias A, et al. Effects оf multielectrode renal denervation on elevated sympathetic nerve activity and insulin resistance in metabolic syndrome. J Hypertens. 2017;35(5):1100-8. DOI:10.1097/HJH.0000000000001262
13. Striuk RI, Dlusskaia IG. Adrenoreaktivnost i serdechno-sosudistaia sistema. Moscow: Meditsina, 2003 (in Russian).
14. Vorobyova DA, Rebrova TYu, Afanasyev SA, et al. Comparative analysis of adrenergic reactivity of erythrocytes in patients with myocardial infarction depending on the severity of coronary obstruction. Russian Journal of Cardiology. 2020;25(5):3735 (in Russian). DOI:10.15829/1560-4071-2020-3735
15. Garganeeva AA, Aleksandrenko VA, Kuzheleva EA, et al. Beta-adrenergic reactivity of erythrocytes and the progression of heart failure in patients after myocardial infarction. Russian Journal of Cardiology. 2020;25(1):3407 (in Russian). DOI:10.15829/1560-4071-2020-1-3407
16. Rebrova TYu, Muslimova EF, Aleksandrenko VA, et al. Dynamics of adrenergic reactivity after transfer of myocardial infarction: annual observation. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(1):44-8 (in Russian). DOI:10.26442/00403660.2021.01.200592
17. Borisova EV, Afanasev SA, Rebrova TYu, et al. Changes in adrenoreactivity in patients with paroxysmal atrial fibrillation while taking sotalol, depending on the tone of the autonomic nervous system. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(1):35-9 (in Russian). DOI:10.17116/terarkh201688135-39
18. Zyubanova IV, Falkovskaya AYu, Mordovin VF, et al. Erythrocyte Membranes Beta-Adrenoreactivity Changes After Renal Denervation in Patients With Resistant Hypertension, Relationship With Antihypertensive and Cardioprotective Intervention Efficacy. Kardiologiia. 2021;61(8):32-9 (in Russian). DOI:10.18087/cardio.2021.8.n1556
19. Hering D, Trzebski A, Narkiewicz K. Recent advances in the pathophysiology of arterial hypertension: potential implications for clinical practice. Pol Arch Intern Med.
2017;127(3):195-204. DOI:10.20452/pamw.3971
20. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10(5):457‑66. DOI:10.1016/j.jash.2016.02.015
21. Rebrova TYu, Ripp TM, Afanasiev SA, et al. Possibility of evaluating the effectiveness of renal artery sympathetic denervation in resistant hypertension early after radiofrequency ablation. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(8):10-3 (in Russian). DOI:10.17116/terarkh201688810-13
22. Ripp TM, Rebrova TYu, Mordovin VF, et al. Criteria for selecting patients with resistant hypertension for a renal sympathetic denervation. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;88(8):14-8 (in Russian). DOI:10.17116/terarkh201688814-18
23. Symplicity HTN-2 Investigators; Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903-9. DOI:10.1016/S0140-6736(10)62039-9
24. Dasgupta I, Sharp ASP. Renal sympathetic denervation for treatment of hypertension: where are we now in 2019? Curr Opin Nephrol Hypertens. 2019;28(5):498-506. DOI:10.1097/MNH.0000000000000532
25. Gapon LI, Mikova EV, Krinochkin DV, et al. Renal artery denervation in patients with resistant arterial hypertension: clinical and organ-protective effect. Systemic Hypertension. 2021;18(3):153-60 (in Russian). DOI:10.26442/2075082X.2021.3.201090
26. Ionov MV, Emelyanov IV, Yudina YuS, et al. Renal sympathetic denervation in patients with resistant hypertension. Results of long-term prospective follow-up. Arterial Hypertension. 2021;27(3):318-32 (in Russian). DOI:10.18705/1607-419X-2021-27-3-318-332
Научно-исследовательский институт кардиологии – филиал ФГБНУ «Томский национальный исследовательский медицинский центр» РАН, Томск, Россия
*rebrova@cardio-tomsk.ru
________________________________________________
Tatiana Yu. Rebrova*, Alla Yu. Falkovskaya, Sergey A. Afanasiev, Victor F. Mordovin, Irina V. Zubanova, Elvira F. Muslimova