Цель. Оценить и сравнить точность определения волемического статуса методом дистанционного диэлектрического исследования с компьютерной томографией (КТ) у пациентов с острой декомпенсацией сердечной недостаточности. Материалы и методы. У 28 пациентов проводилось определение волемического статуса с помощью remote dielectric sensing (ReDS), КТ органов грудной клетки (ОГК) и рентгенографией ОГК дважды за время госпитализации (в день поступления и в день выписки из стационара). Измерения ReDS затем сравнивались с данными КТ с помощью программного обеспечения, которое позволяет использовать полуавтоматические инструменты для определения средней плотности ткани легких (СПТЛ). Результаты СПТЛ из единиц Хаунсфилда [Hounsfield Units; HU] затем конвертировали в уровень жидкости (%), что позволило сравнить их с показателями ReDS. Кроме того, для оценки влияния физической нагрузки на динамику застоя в легких проводился тест 6-минутной ходьбы (6ТШХ) с последующим определением волемического статуса методом ReDS. Результаты. При проведении корреляционного анализа между данными КТ ОГК и ReDS выявлена средняя прямая значимая корреляционная связь (r=+0,5; p=0,001) В динамике статистически значимо снизились показатели гиперволемии по данным КТ ОГК, что отражалось и в снижении показателя ReDS. Содержание жидкости в легких по данным ReDS в среднем при поступлении составило 38,2±4,6%, при выписке – 34,5±3,9% (p=0,005). По данным КТ ОГК СПТЛ при поступлении составила 23,03±3,9%, при выписке – 19,6±3,3% (p=0,003). Положительная динамика методов исследований отражалась и в положительной динамике N-терминального предшественника мозгового натрийуретического пептида, который снизился на 46%. При анализе данных ReDS до и после физической нагрузки отмечался рост значения ReDS после выполненного 6ТШХ, который составил 35,09±3,9%, исходный показатель 34,5±3,9%. Между показателем ReDS до и после 6ТШХ при выписке выявлена сильная прямая значимая корреляционная связь (r=+0,7; p=0,0001). Заключение. Результаты исследования демонстрируют значимую степень корреляции между данными, полученными с помощью системы ReDS и КТ ОГК. Применение ReDS может являться перспективным для диагностики венозного застоя в легких и использоваться у пациентов с острой декомпенсацией сердечной недостаточности.
Aim. To evaluate and compare the accuracy of volemic status determination by remote dielectric sensing with computed tomography (CT) in patients with acute decompensated heart failure. Materials and methods. In 28 patients volemic status was determined by ReDS (remote dielectric sensing), chest computed tomography (CCT), and chest X-ray twice during hospitalization (the day of admission and the day of discharge from the hospital). The ReDS measurements were then compared with CT data using software that allows the use of semi-automated tools to determine mean lung density (MLD). MLD results from Hounsfield Units [HU] were then converted to fluid levels (FU%), allowing them to be compared with ReDS values. In addition, to assess the effect of physical activity on the dynamics of pulmonary stasis there was performed 6-minute walk test (6MWT) followed by determination of volumic status by ReDS method. Results. Correlation analysis revealed an average direct significant correlation (r=+0,5; p=0.001) between the CCT and ReDS data. Hypervolemia indexes according to the CCT revealed statistically significant decrease in the dynamics, which was also reflected in the ReDS index decrease. Lung fluid content according to ReDS averaged 38.2±4.6% on admission, and 34.5±3.9% on discharge (p=0.005). According to CT scan of the CCT, MLD at admission was 23.03±3.9%, at discharge 19.6±3.3% (p=0.003). The positive dynamics of the study methods was also reflected in the positive dynamics of NT-proBNP, which decreased by 46%. In the analysis of ReDS data before and after exercise, there was an increase in ReDS value after the performed 6MWT and it was 35.09±3.9% compared with the initial value of 34.5±3.9%. A strong direct significant correlation (r=+0.7; p=0.0001) was found between the ReDS before and after 6MWT at discharge.
1. Российское кардиологическое общество (РКО). Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083 [Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian)]. DOI:10.15829/1560-4071-2020-4083
2. Adams KF Jr, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209-16. DOI:10.1016/j.ahj.2004.08.005
3. O’Connor CM, Abraham WT, Albert NM, et al. Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2008;156(4):662-73. DOI:10.1016/j.ahj.2008.04.030
4. Cleland JG, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme – a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J. 2003;24(5):442-63. DOI:10.1016/s0195-668x(02)00823-0
5. Komajda M, Follath F, Swedberg K, et al. The EuroHeart Failure Survey programme – a survey on the quality of care among patients with heart failure in Europe. Part 2: treatment. Eur Heart J. 2003;24(5):464-74. DOI:10.1016/s0195-668x(02)00700-5
6. Maggioni AP, Dahlstrom U, Filippatos G, et al. EURObservational Research Programme: regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail. 2013;15(7):808-17. DOI:10.1093/eurjhf/hft050
7. Follath F, Yilmaz MB, Delgado JF, et al. Clinical presentation, management and outcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-HF). Intensive Care Med. 2011;37(4):619‑26. DOI:10.1007/s00134-010-2113-0
8. Farmakis D, Parissis J, Lekakis J, Filippatos G. Acute heart failure: Epidemiology, risk factors, and prevention. Rev Esp Cardiol (Engl Ed). 2015;68(3):245-8. DOI:10.1016/j.rec.2014.11.004
9. Терещенко С.Н., Жиров И.В., Насонова С.Н., и др. Патофизиология острой сердечной недостаточности. Что нового? Российский кардиологический журнал. 2016;9:52-64 [Tereshchenko SN, Zhirov IV, Nasonova SN, et al. Pathophysiology of acute heart failure. Whats new? Russian Journal of Cardiology. 2016;9:52-64 (in Russian)].
DOI:10.15829/1560-4071-2016-9-52-64
10. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21(6):715-31. DOI:10.1002/ejhf.1494
11. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21(6):715-31. DOI:10.1002/ejhf.1494
12. Жиров И.В., Насонова С.Н., Сырхаева А.А., и др. Оптимизация определения волемического статуса у пациентов с острой декомпенсацией сердечной недостаточности. Российский кардиологический журнал. 2022;27(5):5039 [Zhirov IV, Nasonova SN, Syrkhaeva AA, et al. Optimization of intravascular volume determination in patients with acute decompensated heart failure. Russian Journal of Cardiology. 2022;27(5):5039 (in Russian)]. DOI:10.15829/1560-4071-2022-5039
13. Simon BA. Non-invasive imaging of regional lung function using x-ray computed tomography. J Clin Monit Comput. 2000;16(5-6):433-42. DOI:10.1023/a:1011444826908
14. Morooka N, Watanabe S, Masuda Y, Inagaki Y. Estimation of pulmonary water distribution and pulmonary congestion by computed tomography. Jpn Heart J. 1982;23(5):697-709. DOI:10.1536/ihj.23.697
15. Kato S, Nakamoto T, Iizuka M. Early diagnosis and estimation of pulmonary congestion and edema in patients with left-sided heart diseases from histogram of pulmonary CT number. Chest. 1996;109(6):1439-45. DOI:10.1378/chest.109.6.1439
16. Snyder EM, Beck KC, Turner ST, et al. Genetic variation of the beta2-adrenergic receptor is associated with differences in lung fluid accumulation in humans. J Appl Physiol. 1985;102(6):2172-8. DOI:10.1152/japplphysiol.01300.2006
17. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-7. DOI:10.1164/ajrccm.166.1.at1102
18. Rosenblum LJ, Mauceri RA, Wellenstein DE, et al. Density patterns in the normal lung as determined by computed tomography. Radiology. 1980;137(2):409-16. DOI:10.1148/radiology.137.2.7433674
19. Amir O, Azzam ZS, Gaspar T, et al. Validation of remote dielectric sensing (ReDS™) technology for quantification of lung fluid status: Comparison to high resolution chest computed tomography in patients with and without acute heart failure. Int J Cardiol. 2016;221:841-6. DOI:10.1016/j.ijcard.2016.06.323
20. Amir O, Rappaport D, Zafrir B, Abraham WT. A novel approach to monitoring pulmonary congestion in heart failure: initial animal and clinical experiences using remote dielectric sensing technology. Congest Heart Fail. 2013;19(3):149-55. DOI:10.1111/chf.12021
________________________________________________
1. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian).
DOI:10.15829/1560-4071-2020-4083
2. Adams KF Jr, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209-16. DOI:10.1016/j.ahj.2004.08.005
3. O’Connor CM, Abraham WT, Albert NM, et al. Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2008;156(4):662-73. DOI:10.1016/j.ahj.2008.04.030
4. Cleland JG, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme – a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J. 2003;24(5):442-63. DOI:10.1016/s0195-668x(02)00823-0
5. Komajda M, Follath F, Swedberg K, et al. The EuroHeart Failure Survey programme – a survey on the quality of care among patients with heart failure in Europe. Part 2: treatment. Eur Heart J. 2003;24(5):464-74. DOI:10.1016/s0195-668x(02)00700-5
6. Maggioni AP, Dahlstrom U, Filippatos G, et al. EURObservational Research Programme: regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail. 2013;15(7):808-17. DOI:10.1093/eurjhf/hft050
7. Follath F, Yilmaz MB, Delgado JF, et al. Clinical presentation, management and outcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-HF). Intensive Care Med. 2011;37(4):619‑26. DOI:10.1007/s00134-010-2113-0
8. Farmakis D, Parissis J, Lekakis J, Filippatos G. Acute heart failure: Epidemiology, risk factors, and prevention. Rev Esp Cardiol (Engl Ed). 2015;68(3):245-8. DOI:10.1016/j.rec.2014.11.004
9. Tereshchenko SN, Zhirov IV, Nasonova SN, et al. Pathophysiology of acute heart failure. Whats new? Russian Journal of Cardiology. 2016;9:52-64 (in Russian).
DOI:10.15829/1560-4071-2016-9-52-64
10. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21(6):715-31. DOI:10.1002/ejhf.1494
11. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21(6):715-31. DOI:10.1002/ejhf.1494
12. Zhirov IV, Nasonova SN, Syrkhaeva AA, et al. Optimization of intravascular volume determination in patients with acute decompensated heart failure. Russian Journal of Cardiology. 2022;27(5):5039 (in Russian). DOI:10.15829/1560-4071-2022-5039
13. Simon BA. Non-invasive imaging of regional lung function using x-ray computed tomography. J Clin Monit Comput. 2000;16(5-6):433-42. DOI:10.1023/a:1011444826908
14. Morooka N, Watanabe S, Masuda Y, Inagaki Y. Estimation of pulmonary water distribution and pulmonary congestion by computed tomography. Jpn Heart J. 1982;23(5):697-709. DOI:10.1536/ihj.23.697
15. Kato S, Nakamoto T, Iizuka M. Early diagnosis and estimation of pulmonary congestion and edema in patients with left-sided heart diseases from histogram of pulmonary CT number. Chest. 1996;109(6):1439-45. DOI:10.1378/chest.109.6.1439
16. Snyder EM, Beck KC, Turner ST, et al. Genetic variation of the beta2-adrenergic receptor is associated with differences in lung fluid accumulation in humans. J Appl Physiol. 1985;102(6):2172-8. DOI:10.1152/japplphysiol.01300.2006
17. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-7. DOI:10.1164/ajrccm.166.1.at1102
18. Rosenblum LJ, Mauceri RA, Wellenstein DE, et al. Density patterns in the normal lung as determined by computed tomography. Radiology. 1980;137(2):409-16. DOI:10.1148/radiology.137.2.7433674
19. Amir O, Azzam ZS, Gaspar T, et al. Validation of remote dielectric sensing (ReDS™) technology for quantification of lung fluid status: Comparison to high resolution chest computed tomography in patients with and without acute heart failure. Int J Cardiol. 2016;221:841-6. DOI:10.1016/j.ijcard.2016.06.323
20. Amir O, Rappaport D, Zafrir B, Abraham WT. A novel approach to monitoring pulmonary congestion in heart failure: initial animal and clinical experiences using remote dielectric sensing technology. Congest Heart Fail. 2013;19(3):149-55. DOI:10.1111/chf.12021
1ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия; 2ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия; 3ФГАОУ ВО «Российский университет дружбы народов», Москва, Россия; 4ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*a-arturovna@list.ru
________________________________________________
Agunda A. Syrkhaeva*1, Svetlana N. Nasonova1, Igor V. Zhirov1,2, Ulia A. Khalilova3, Andrey V. Shirkin1,
Merab A. Shariya1,4, Sergey N. Tereshchenko1,2
1Chazov National Medical Research Center of Cardiology, Moscow, Russia; 2Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 3People’s Friendship University of Russia (RUDN University), Moscow, Russia; 4Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*a-arturovna@list.ru