Роль данных компьютерно-томографической саркометрии с использованием технологий машинного обучения в прогнозировании послеоперационных исходов у больных раком желудка
Роль данных компьютерно-томографической саркометрии с использованием технологий машинного обучения в прогнозировании послеоперационных исходов у больных раком желудка
Кукарская В.А., Агабабян Т.А. Роль данных компьютерно-томографической саркометрии с использованием технологий машинного обучения в прогнозировании послеоперационных исходов у больных раком желудка. Терапевтический архив. 2024;96(2):122–126. DOI: 10.26442/00403660.2024.02.202598
Kukarskaia VA, Agababyan TA. The role of computed tomographic sarcometry data using machine learning technologies in predicting postoperative outcomes in patients with gastric cancer. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(2):122–126. DOI: 10.26442/00403660.2024.02.202598
Роль данных компьютерно-томографической саркометрии с использованием технологий машинного обучения в прогнозировании послеоперационных исходов у больных раком желудка
Кукарская В.А., Агабабян Т.А. Роль данных компьютерно-томографической саркометрии с использованием технологий машинного обучения в прогнозировании послеоперационных исходов у больных раком желудка. Терапевтический архив. 2024;96(2):122–126. DOI: 10.26442/00403660.2024.02.202598
Kukarskaia VA, Agababyan TA. The role of computed tomographic sarcometry data using machine learning technologies in predicting postoperative outcomes in patients with gastric cancer. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(2):122–126. DOI: 10.26442/00403660.2024.02.202598
Обоснование. Саркопения является неблагоприятным прогностическим фактором у онкологических больных и имеет особое значение у больных с высоким риском развития нутритивной недостаточности. Наиболее доступным и распространенным способом неинвазивной оценки мышечной массы является саркометрия методом компьютерной томографии (КТ). Однако его клиническое использование ограничено увеличением трудоемкости ручного измерения мышечной массы на КТ-изображении. Цель. Оптимизировать применение КТ-саркометрии на дооперационном этапе комбинированного лечения у больных раком желудка (РЖ) для стратификации риска возникновения послеоперационных осложнений с помощью разработанного программного ассистента. Материалы и методы. На I этапе создан «датасет», содержащий 207 КТ-изображений, с помощью которого произведено обучение модели сегментации мышечной ткани. На относительно малой обучающей выборке достигнуто значение коэффициент схожести Дайса 0,91. На II этапе исследования проанализирована частота встречаемости саркопении у обследованных больных до проведения неоадъювантной химиотерапии и непосредственно перед гастрэктомией. Саркопения отмечена у 41 (63%) из 65 больных и у 50 (77%) больных после проведения неоадъювантной химиотерапии. Послеоперационные осложнения диагностированы у 12 (19%) из 65 больных. Корреляции между частотой их возникновения и мышечным статусом больных не выявлено (p=0,392), однако осложнения тяжелой степени (≥IIIb по классификации Clavien–Dindo) выявлены только в группе больных саркопенией (p<0,001). Результаты. Таким образом, предоперационная саркопения, выявленная на КТ, является фактором риска развития тяжелых послеоперационных осложнений у пациентов с РЖ, перенесших гастрэктомию. Внедрение технологий глубокого обучения в клиническую практику облегчает оценку саркопении у больных РЖ.
Background. Sarcopenia is a negative prognostic factor in cancer patients. This is important in patients at high risk of developing nutritional deficiency. Determination of the skeletal muscle index (SMI) with the help of computed tomography (CT) the method of choice to is diagnostics of sarcopenia. However, the clinical use of CT is limited by the increased time required to manually measure muscle mass from CT-images. Aim. To improve the use of CT sarcometry at the preoperative stage of combined treatment in patients with gastric cancer to stratify the risk of postoperative complications using the developed software assistant. Materials and methods. At the first stage, a “dataset” was created. It contained 207 CT images. It was used to train a muscle tissue segmentation model. The Dice’s similarity coefficient was achieved at a value of 0.91 on a small training set. At the second stage of the study analyzed the incidence of sarcopenia in the examined patients before neoadjuvant chemotherapy and immediately before gastrectomy; 41 (63%) of 65 patients had sarcopenia in the study group and in 50 (77%) patients after neoadjuvant chemotherapy. Postoperative complications were diagnosed in 12 (19%) of 65 patients. There was no correlation between the frequency of their occurrence and the muscular status of patients (p=0.392), however severe complications (≥IIIb according to the Clavien–Dindo classification) were detected only in the group of patients with sarcopenia (p<0.001). Results. As a result, preoperative sarcopenia is a negative factor in the development of severe postoperative complications in patients with gastric cancer who have undergone gastrectomy. The introduction of deep learning technologie to clinical practice can facilitate the assessment of muscle tissue parameters in patients with cancer.
1. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022 [Zlokachestvennyie novoobrazovaniia v Rossii v 2021 godu (zabolevaiemost' i smertnost'). Pod red. AD Kaprina, VV Starinskogo, AO Shakhzadovoi. Moscow: MNIOI im. PA Gertsena − filial FGBU “NMITS radiologii” Minzdrava Rossii, 2022 (in Russian)].
2. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. DOI:10.1093/ageing/afy169
3. Kuwada K, Kuroda S, Kikuchi S, et al. Clinical Impact of Sarcopenia on Gastric Cancer. Anticancer Res. 2019;39(5):2241-9. DOI:10.21873/anticanres.13340
4. Дикова Т.С., Зацепина А.Ю., Федоринов Д.С., Лядов В.К. Саркопения, саркопеническое ожирение, миостеатоз как факторы неблагоприятного прогноза при опухолях желудочно-кишечного тракта: обзор литературы. Современная Онкология. 2021;23(1):141-7 [Dikova TS, Zatsepina AYu, Fedorinov DS, Lyadov VK. Sarcopenia, sarcopenic obesity, myosteatosis as factors of poor prognosis in gastrointestinal tract tumors: review. Journal of Modern Oncology. 2021;23(1):141-7 (in Russian)]. DOI:10.26442/18151434.2021.1.200715
5. Fearon KC, Jenkins JT, Carli F, Lassen K. Patient optimization for gastrointestinal cancer surgery. Br J Surg. 2013;100(1):15-27. DOI:10.1002/bjs.8988
6. Shi B, Liu S, Chen J, et al. Sarcopenia is Associated with Perioperative Outcomes in Gastric Cancer Patients Undergoing Gastrectomy. Ann Nutr Metab. 2019;75(4):213-22. DOI:10.1159/000504283
7. Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol Med. 2022;127(3):228-237. DOI:10.1007/s11547-022-01450-3
8. Otsuji H, Yokoyama Y, Ebata T, et al. Preoperative sarcopenia negatively impacts postoperative outcomes following major hepatectomy with extrahepatic bile duct resection. World J Surg. 2015;39(6):1494-500. DOI:10.1007/s00268-015-2988-6
9. Fukuda Y, Yamamoto K, Hirao M, et al. Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer. 2016;19(3):986-93. DOI:10.1007/s10120-015-0546-4
10. Хорошилов И.Е. Кахексия и саркопения у онкологических пациентов: диагностика и лечебная тактика. Клиническое питание и метаболизм. 2020;1(1):36-46 [Khoroshilov IE. Cachexia and sarcopenia at oncological patients: diagnostics and treatment tactics. Clinical Nutrition and Metabolism. 2020;1(1):36-46 (in Russian)]. DOI:10.17816/clinutr20650
11. Бриш Н.А., Семиглазова Т.Ю., Карачун А.М., и др. Влияние коррекции нутритивной недостаточности на эффективность неоадъювантной химиотерапии у больных местно-распространенным раком желудка. Современная Онкология. 2021;23(3):519-24 [Brish NA, Semiglazova TY, Karachun AM, et al. Influence of correction of nutritive deficiency on the effectiveness of neoadjuvant chemotherapy in patients with locally advanced gastric cancer. Journal of Modern Oncology. 2021;23(3):519-24 (in Russian)]. DOI:10.26442/18151434.2021.3.201075
12. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489-95.
DOI:10.1016/S1470-2045(10)70218-7
13. Zhou CJ, Zhang FM, Zhang FY, et al. Sarcopenia: a new predictor of postoperative complications for elderly gastric cancer patients who underwent radical gastrectomy. J Surg Res. 2017;211:137-46. DOI:10.1016/j.jss.2016.12.014
14. Burns JE, Yao J, Chalhoub D, et al. A Machine Learning Algorithm to Estimate Sarcopenia on Abdominal CT. Acad Radiol. 2020;27(3):311-20. DOI:10.1016/j.acra.2019.03.011
15. Ackermans LLGC, Volmer L, Wee L, et al. Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients. Sensors (Basel). 2021;21(6):2083. DOI:10.3390/s21062083
________________________________________________
1. Zlokachestvennyie novoobrazovaniia v Rossii v 2021 godu (zabolevaiemost' i smertnost'). Pod red. AD Kaprina, VV Starinskogo, AO Shakhzadovoi. Moscow: MNIOI im. PA Gertsena − filial FGBU “NMITS radiologii” Minzdrava Rossii, 2022 (in Russian).
2. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. DOI:10.1093/ageing/afy169
3. Kuwada K, Kuroda S, Kikuchi S, et al. Clinical Impact of Sarcopenia on Gastric Cancer. Anticancer Res. 2019;39(5):2241-9. DOI:10.21873/anticanres.13340
4. Dikova TS, Zatsepina AYu, Fedorinov DS, Lyadov VK. Sarcopenia, sarcopenic obesity, myosteatosis as factors of poor prognosis in gastrointestinal tract tumors: review. Journal of Modern Oncology. 2021;23(1):141-7 (in Russian). DOI:10.26442/18151434.2021.1.200715
5. Fearon KC, Jenkins JT, Carli F, Lassen K. Patient optimization for gastrointestinal cancer surgery. Br J Surg. 2013;100(1):15-27. DOI:10.1002/bjs.8988
6. Shi B, Liu S, Chen J, et al. Sarcopenia is Associated with Perioperative Outcomes in Gastric Cancer Patients Undergoing Gastrectomy. Ann Nutr Metab. 2019;75(4):213-22. DOI:10.1159/000504283
7. Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol Med. 2022;127(3):228-237. DOI:10.1007/s11547-022-01450-3
8. Otsuji H, Yokoyama Y, Ebata T, et al. Preoperative sarcopenia negatively impacts postoperative outcomes following major hepatectomy with extrahepatic bile duct resection. World J Surg. 2015;39(6):1494-500. DOI:10.1007/s00268-015-2988-6
9. Fukuda Y, Yamamoto K, Hirao M, et al. Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer. 2016;19(3):986-93. DOI:10.1007/s10120-015-0546-4
10. Khoroshilov IE. Cachexia and sarcopenia at oncological patients: diagnostics and treatment tactics. Clinical Nutrition and Metabolism. 2020;1(1):36-46 (in Russian). DOI:10.17816/clinutr20650
11. Brish NA, Semiglazova TY, Karachun AM, et al. Influence of correction of nutritive deficiency on the effectiveness of neoadjuvant chemotherapy in patients with locally advanced gastric cancer. Journal of Modern Oncology. 2021;23(3):519-24 (in Russian). DOI:10.26442/18151434.2021.3.201075
12. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489-95.
DOI:10.1016/S1470-2045(10)70218-7
13. Zhou CJ, Zhang FM, Zhang FY, et al. Sarcopenia: a new predictor of postoperative complications for elderly gastric cancer patients who underwent radical gastrectomy. J Surg Res. 2017;211:137-46. DOI:10.1016/j.jss.2016.12.014
14. Burns JE, Yao J, Chalhoub D, et al. A Machine Learning Algorithm to Estimate Sarcopenia on Abdominal CT. Acad Radiol. 2020;27(3):311-20. DOI:10.1016/j.acra.2019.03.011
15. Ackermans LLGC, Volmer L, Wee L, et al. Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients. Sensors (Basel). 2021;21(6):2083. DOI:10.3390/s21062083
Авторы
В.А. Кукарская*, Т.А. Агабабян
Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Обнинск, Россия
*kukalery@mail.ru
________________________________________________
Valeriia A. Kukarskaia*, Tatev A. Agababyan
Tsyb Medical Radiological Research Centre – Branch of the National Medical Research Radiological Centre, Obninsk, Russia
*kukalery@mail.ru