Shchepikhin EI, Shmelev EI, Ergeshov AE. Pulmonary fibrosis after a new coronavirus infection – versions and controversies: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):298–302.
DOI: 10.26442/00403660.2024.03.202632
Фиброз легких после перенесенной новой коронавирусной инфекции: версии и контраверсии
Щепихин Е.И., Шмелев Е.И., Эргешов А.Э. Фиброз легких после перенесенной новой коронавирусной инфекции: версии и контраверсии. Терапевтический архив. 2024;96(3):298–302.
DOI: 10.26442/00403660.2024.03.202632
Shchepikhin EI, Shmelev EI, Ergeshov AE. Pulmonary fibrosis after a new coronavirus infection – versions and controversies: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):298–302.
DOI: 10.26442/00403660.2024.03.202632
Фиброз – динамический процесс, характеризующийся типичным каскадом событий в результате сверхвыраженной репарации соединительной ткани в ответ на повреждение, проявляющийся избыточным накоплением внеклеточного матрикса. Развитие фиброза является определяющим фактором в патогенезе, клиническом течении и прогнозе многих патологических состояний, среди которых особое место занимают интерстициальные заболевания легких. По данным отечественного регистра АКТИВ, представленного Г.П. Арутюновым и соавт., среди включенных пациентов с различными комбинациями коморбидных заболеваний более чем у 1/3 (30,4%) объем поражения легочной ткани в острый период новой коронавирусной инфекции превышал 50% (КТ 3–4), а галопирующий рост числа пациентов, перенесших коронавирусную инфекцию с поражением легких, возвел вопросы ее отдаленных последствий в число наиболее актуальных во внутренней медицине текущего времени. Часто в исходе перенесенного COVID-19 у пациентов сохраняются клинические и функциональные изменения, являющиеся синдромосходными с интерстициальными заболеваниями легких иного генеза, прогноз которых определяется развитием интерстициального фиброза и темпами его прогрессирования. Данная статья – попытка рассмотреть вопросы фиброгенеза у пациентов, перенесших новую коронавирусную инфекцию, через призму полярных данных по иммунобиологии, клиническому течению и прогнозу.
Fibrosis is a dynamic process characterized by a typical cascade of events as a result of overexpressed repair of connective tissue in response to injury, and manifested by excessive accumulation of extracellular matrix. The development of fibrosis is a determining factor in the pathogenesis, clinical course and prognosis of many diseases, among which interstitial lung diseases occupy a special place. According to a large Russian registry (ClinicalTrials.gov: NCT04492384), in a third of patients with COVID-19, the volume of lung parenchyma involvement exceeds 50% (CT 3-4). The rapid growth in the number of patients who have had a coronavirus infection with lung damage has raised the issues of its long-term consequences to the number of the most relevant in internal medicine of the current time. Often, in the outcome of a coronavirus infection, patients retain clinical and functional changes that are similar to interstitial lung diseases of a different origin, the prognosis of which is determined by the development of interstitial fibrosis and the rate of its progression. This article is an attempt to consider topical issues of fibrogenesis in patients who have undergone a new coronavirus infection through the prism of polar data on immunobiology, clinical course and prognosis.
1. Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., и др. Регистр «Анализ динамики Коморбидных заболеваний у пациенТов, перенесшИх инфицироВание SARS-CoV-2» (АКТИВ). Оценка влияния комбинаций исходных сопутствующих заболеваний у пациентов с COVID-19 на прогноз. Терапевтический архив. 2022;94(1):32-47 [Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. ACTIV SARS-CoV-2 registry (Analysis of Chronic Non-infectious Diseases Dynamics After COVID-19 Infection in Adult Patients). Assessment of impact of combined original comorbid diseases in patients with COVID-19 on the prognosis. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(1):32-47 (in Russian)]. DOI:10.26442/00403660.2022.01.201320
2. Wijsenbeek M, Cottin V. Spectrum of fibrotic lung diseases. N Engl J Med. 2020;383(10):958-68. DOI:10.1056/NEJMra2005230
3. Mei Q, Liu Z, Zuo H, et al. Idiopathic pulmonary fibrosis: An update on pathogenesis. Front Pharmacol. 2022;12:797292. DOI:10.3389/fphar.2021.797292
4. John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev. 2021;302(1):228-40. DOI:10.1111/imr.12977
5. Udwadia ZF, Koul PA, Richeldi L. Post-COVID lung fibrosis: The tsunami that will follow the earthquake. Lung India. 2021;38(Suppl.):S41-7. DOI:10.4103/lungindia.lungindia_818_20
6. Allen RJ, Guillen-Guio B, Croot E, et al. Genetic overlap between idiopathic pulmonary fibrosis and COVID-19. Eur Respir J. 2022;60(1):2103132. DOI:10.1183/13993003.03132-2021
7. Aguiar JA, Tremblay BJ, Mansfield MJ, et al. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J. 2020;56(3):2001123. DOI:10.1183/13993003.01123-2020
8. Calver CJ, John AE, Organ L, et al. The novel coronavirus SARS-CoV-2 binds RGD integrins and upregulates avb3 integrins in COVID-19 infected lungs. Thorax.
2021;76(Suppl. 1):A1-256. DOI:10.1136/thorax-2020-BTSabstracts.37
9. D'Agnillo F, Walters KA, Xiao Y, et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci Transl Med. 2021;13(620):eabj7790. DOI:10.1126/scitranslmed.abj7790
10. Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198-209. DOI:10.1111/his.14134
11. Peng DH, Luo Y, Huang LJ, et al. Correlation of Krebs von den Lungen-6 and fibronectin with pulmonary fibrosis in coronavirus disease 2019. Clin Chim Acta. 2021;517:48-53. DOI:10.1016/j.cca.2021.02.012
12. Xue M, Zhang T, Chen H, et al. Krebs von den Lungen-6 as a predictive indicator for the risk of secondary pulmonary fibrosis and its reversibility in COVID-19 patients. Int J Biol Sci. 2021;17(6):1565-73. DOI:10.7150/ijbs.58825
13. d'Alessandro M, Bergantini L, Cameli P, et al. Krebs von den Lungen-6 as a biomarker for disease severity assessment in interstitial lung disease: A comprehensive review. Biomark Med. 2020;14(8):665-74. DOI:10.2217/bmm-2019-0545
14. Chung C, Kim J, Cho HS, Kim HC. Baseline serum Krebs von den Lungen-6 as a biomarker for the disease progression in idiopathic pulmonary fibrosis. Sci Rep. 2022;12(1):8564. DOI:10.1038/s41598-022-12399-8
15. Inui N, Sakai S, Kitagawa M. Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-β and the ubiquitin-proteasome pathway. Int J Mol Sci. 2021;22(11):6107. DOI:10.3390/ijms22116107
16. Ye Z, Hu Y. TGF β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med. 2021;48(1):132. DOI:10.3892/ijmm.2021.4965
17. Vaz de Paula CB, Nagashima S, Liberalesso V, et al. COVID-19: Immunohistochemical analysis of TGF-β signaling pathways in pulmonary fibrosis. Int J Mol Sci. 2021;23(1):168. DOI:10.3390/IJMS23010168
18. Li P, Zhang JF, Xia XD, et al. Serial evaluation of high-resolution CT findings in patients with pneumonia in novel swine-origin influenza A (H1N1) virus infection. Br J Radiol. 2012;85(1014):729-35. DOI:10.1259/bjr/85580974
19. Авдеев С.Н., Карчевская Н.А., Баймаканова Г.Е., Черняк А.В. Годичное наблюдение за больными, перенесшими острое повреждение легких/острый респираторный дистресс-синдром, вызванный вирусом гриппа А/H1N1. Пульмонология. 2011;(4):58-66 [Avdeev SN, Karchevskaya NA, Baimakanova GE, Cherniak AV. A one-year follow-up study of patients survived after ALI/ARDS caused by influenza A/H1N1. Pulmonologiya. 2011;(4):58-66 (in Russian)]. DOI:10.18093/0869-0189-2011-0-4-58-66
20. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-47. DOI:10.2353/ajpath.2007.061088
21. Li TS, Gomersall CD, Joynt GM, et al. Long-term outcome of acute respiratory distress syndrome caused by severe acute respiratory syndrome (SARS): An observational study. Crit Care Resusc. 2006;8(4):302-8.
22. Wong KT, Antonio GE, Hui DS, et al. Severe acute respiratory syndrome: Thin-section computed tomography features, temporal changes, and clinicoradiologic correlation during the convalescent period. J Comput Assist Tomogr. 2004;28(6):790-5. DOI:10.1097/00004728-200411000-00010
23. Huntley CC, Patel K, Bil Bushra SE, et al. Pulmonary function test and computed tomography features during follow-up after SARS, MERS and COVID-19: A systematic review and meta-analysis. ERJ Open Res. 2022;8(2):00056-2022. DOI:10.1183/23120541.00056-2022
24. Kim J, Yang YL, Jeong Y, Jang YS. Middle east respiratory syndrome-coronavirus infection into established hDPP4-transgenic mice accelerates lung damage via activation of the pro-inflammatory response and pulmonary fibrosis. J Microbiol Biotechnol. 2020;30(3):427-38. DOI:10.4014/jmb.1910.10055
25. Das KM, Lee EY, Singh R, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017;27(3):342-9. DOI:10.4103/ijri.IJRI_469_16
26. Zhou S, Wang Y, Zhu T, Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. Am J Roentgenol. 2020;214(6):1287-94. DOI:10.2214/AJR.20.22975
27. Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): A study of 63 patients in Wuhan, China. Eur Radiol. 2020;30(6):3306-9. DOI:10.1007/s00330-020-06731-x
28. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis. 2020;20(4):425-34. DOI:10.1016/S1473-3099(20)30086-4
29. Wu X, Liu X, Zhou Y, et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir Med. 2021;9(7):747-54. DOI:10.1016/S2213-2600(21)00174-0
30. Bocchino M, Lieto R, Romano F, et al. Chest CT-based assessment of 1-year outcomes after moderate COVID-19 pneumonia. Radiology. 2022;305(2):479-85. DOI:10.1148/radiol.220019
31. Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Path. 2020;33(6):1007-14. DOI:10.1038/s41379-020-0536-x
32. Gerardo AM, Almeida T, Maduro S, et al. Función pulmonar, capacidad funcional y estado de salud en una cohorte de sobrevivientes de COVID-19 a los 3 y 6 meses después del alta hospitalaria. Rev Med Clín. 2021;20215(2):e11052105023.
33. Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology. 2021;27(4):328-37. DOI:10.1016/j.pulmoe.2020.10.013
34. Карчевская Н.А., Скоробогач И.М., Черняк А.В., и др. Результаты отдаленного обследования пациентов после COVID-19. Терапевтический архив. 2022;94(3):378-88 [Karchevskaya NA, Skorobogach IM, Cherniak AV, et al. Long-term follow-up study of post-COVID-19 patients. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(3):378-88 (in Russian)]. DOI:10.26442/00403660.2022.03.201399
35. Самсонова М.В., Конторщиков А.С., Черняев А.Л., и др. Патогистологические изменения в легких в отдаленные сроки после COVID-19. Пульмонология. 2021;31(5):571-9 [Samsonova MV, Kontorschikov AS, Cherniaev AL, et al. Long-term pathological changes in lungs after COVID-19. Pulmonologiya. 2021;31(5):571-9 (in Russian)].
DOI:10.18093/0869-0189-2021-31-5-571-579
36. Konopka KE, Perry W, Huang T, et al. Usual interstitial pneumonia is the most common finding in surgical lung biopsies from patients with persistent interstitial lung disease following infection with SARS-CoV-2. EClinicalMedicine. 2021;42:101209. DOI:10.1016/j.eclinm.2021.101209
37. Hu Q, Liu Y, Chen C, et al. Reversible bronchiectasis in COVID-19 survivors with acute respiratory distress syndrome: Pseudobronchiectasis. Front Med (Lausanne). 2021;8:739857. DOI:10.3389/fmed.2021.739857
38. Olson A, Hartmann N, Patnaik P, et al. Estimation of the prevalence of progressive fibrosing interstitial lung diseases: Systematic literature review and data from a physician survey. Adv Ther. 2021;38(2):854-67. DOI:10.1007/s12325-020-01578-6
39. Kolb M, Vašáková M. The natural history of progressive fibrosing interstitial lung diseases. Respir Res. 2019;20(1):57. DOI:10.1186/s12931-019-1022-1
40. Ng BH, Ban AY, Nik Abeed NN, Faisal M. Organising pneumonia manifesting as a late-phase complication of COVID-19. BMJ Case Reports. 2021;14(10):e246119.
DOI:10.1136/bcr-2021-246119
41. Golbets E, Kaplan A, Shafat T, et al. Secondary organizing pneumonia after recovery of mild COVID-19 infection. J Med Virol. 2022;94(1):417-23. DOI:10.1002/jmv.27360
42. Аверьянов А.В., Дивакова Т.И., Балионис О.И., и др. Постковидное поражение легких с дыхательной недостаточностью: есть ли терапевтические инструменты? Практическая пульмонология. 2021;(3):11-5 [Averyanov AV, Divakova TI, Balionis OI, et al. Post-COVID lung tissue damage with respiratory failure: Are there any therapeutic tools? Practical Pulmonology. 2021;(3):11-5 (in Russian)]. DOI:10.24412/2409-6636-2021-12416
________________________________________________
1. Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. ACTIV SARS-CoV-2 registry (Analysis of Chronic Non-infectious Diseases Dynamics After COVID-19 Infection in Adult Patients). Assessment of impact of combined original comorbid diseases in patients with COVID-19 on the prognosis. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(1):32-47 (in Russian). DOI:10.26442/00403660.2022.01.201320
2. Wijsenbeek M, Cottin V. Spectrum of fibrotic lung diseases. N Engl J Med. 2020;383(10):958-68. DOI:10.1056/NEJMra2005230
3. Mei Q, Liu Z, Zuo H, et al. Idiopathic pulmonary fibrosis: An update on pathogenesis. Front Pharmacol. 2022;12:797292. DOI:10.3389/fphar.2021.797292
4. John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev. 2021;302(1):228-40. DOI:10.1111/imr.12977
5. Udwadia ZF, Koul PA, Richeldi L. Post-COVID lung fibrosis: The tsunami that will follow the earthquake. Lung India. 2021;38(Suppl.):S41-7. DOI:10.4103/lungindia.lungindia_818_20
6. Allen RJ, Guillen-Guio B, Croot E, et al. Genetic overlap between idiopathic pulmonary fibrosis and COVID-19. Eur Respir J. 2022;60(1):2103132. DOI:10.1183/13993003.03132-2021
7. Aguiar JA, Tremblay BJ, Mansfield MJ, et al. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J. 2020;56(3):2001123. DOI:10.1183/13993003.01123-2020
8. Calver CJ, John AE, Organ L, et al. The novel coronavirus SARS-CoV-2 binds RGD integrins and upregulates avb3 integrins in COVID-19 infected lungs. Thorax.
2021;76(Suppl. 1):A1-256. DOI:10.1136/thorax-2020-BTSabstracts.37
9. D'Agnillo F, Walters KA, Xiao Y, et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci Transl Med. 2021;13(620):eabj7790. DOI:10.1126/scitranslmed.abj7790
10. Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198-209. DOI:10.1111/his.14134
11. Peng DH, Luo Y, Huang LJ, et al. Correlation of Krebs von den Lungen-6 and fibronectin with pulmonary fibrosis in coronavirus disease 2019. Clin Chim Acta. 2021;517:48-53. DOI:10.1016/j.cca.2021.02.012
12. Xue M, Zhang T, Chen H, et al. Krebs von den Lungen-6 as a predictive indicator for the risk of secondary pulmonary fibrosis and its reversibility in COVID-19 patients. Int J Biol Sci. 2021;17(6):1565-73. DOI:10.7150/ijbs.58825
13. d'Alessandro M, Bergantini L, Cameli P, et al. Krebs von den Lungen-6 as a biomarker for disease severity assessment in interstitial lung disease: A comprehensive review. Biomark Med. 2020;14(8):665-74. DOI:10.2217/bmm-2019-0545
14. Chung C, Kim J, Cho HS, Kim HC. Baseline serum Krebs von den Lungen-6 as a biomarker for the disease progression in idiopathic pulmonary fibrosis. Sci Rep. 2022;12(1):8564. DOI:10.1038/s41598-022-12399-8
15. Inui N, Sakai S, Kitagawa M. Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-β and the ubiquitin-proteasome pathway. Int J Mol Sci. 2021;22(11):6107. DOI:10.3390/ijms22116107
16. Ye Z, Hu Y. TGF β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med. 2021;48(1):132. DOI:10.3892/ijmm.2021.4965
17. Vaz de Paula CB, Nagashima S, Liberalesso V, et al. COVID-19: Immunohistochemical analysis of TGF-β signaling pathways in pulmonary fibrosis. Int J Mol Sci. 2021;23(1):168. DOI:10.3390/IJMS23010168
18. Li P, Zhang JF, Xia XD, et al. Serial evaluation of high-resolution CT findings in patients with pneumonia in novel swine-origin influenza A (H1N1) virus infection. Br J Radiol. 2012;85(1014):729-35. DOI:10.1259/bjr/85580974
19. Avdeev SN, Karchevskaya NA, Baimakanova GE, Cherniak AV. A one-year follow-up study of patients survived after ALI/ARDS caused by influenza A/H1N1. Pulmonologiya.
2011;(4):58-66 (in Russian). DOI:10.18093/0869-0189-2011-0-4-58-66
20. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-47. DOI:10.2353/ajpath.2007.061088
21. Li TS, Gomersall CD, Joynt GM, et al. Long-term outcome of acute respiratory distress syndrome caused by severe acute respiratory syndrome (SARS): An observational study. Crit Care Resusc. 2006;8(4):302-8.
22. Wong KT, Antonio GE, Hui DS, et al. Severe acute respiratory syndrome: Thin-section computed tomography features, temporal changes, and clinicoradiologic correlation during the convalescent period. J Comput Assist Tomogr. 2004;28(6):790-5. DOI:10.1097/00004728-200411000-00010
23. Huntley CC, Patel K, Bil Bushra SE, et al. Pulmonary function test and computed tomography features during follow-up after SARS, MERS and COVID-19: A systematic review and meta-analysis. ERJ Open Res. 2022;8(2):00056-2022. DOI:10.1183/23120541.00056-2022
24. Kim J, Yang YL, Jeong Y, Jang YS. Middle east respiratory syndrome-coronavirus infection into established hDPP4-transgenic mice accelerates lung damage via activation of the pro-inflammatory response and pulmonary fibrosis. J Microbiol Biotechnol. 2020;30(3):427-38. DOI:10.4014/jmb.1910.10055
25. Das KM, Lee EY, Singh R, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017;27(3):342-9. DOI:10.4103/ijri.IJRI_469_16
26. Zhou S, Wang Y, Zhu T, Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. Am J Roentgenol. 2020;214(6):1287-94. DOI:10.2214/AJR.20.22975
27. Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): A study of 63 patients in Wuhan, China. Eur Radiol. 2020;30(6):3306-9. DOI:10.1007/s00330-020-06731-x
28. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis. 2020;20(4):425-34. DOI:10.1016/S1473-3099(20)30086-4
29. Wu X, Liu X, Zhou Y, et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir Med. 2021;9(7):747-54. DOI:10.1016/S2213-2600(21)00174-0
30. Bocchino M, Lieto R, Romano F, et al. Chest CT-based assessment of 1-year outcomes after moderate COVID-19 pneumonia. Radiology. 2022;305(2):479-85. DOI:10.1148/radiol.220019
31. Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Path. 2020;33(6):1007-14. DOI:10.1038/s41379-020-0536-x
32. Gerardo AM, Almeida T, Maduro S, et al. Función pulmonar, capacidad funcional y estado de salud en una cohorte de sobrevivientes de COVID-19 a los 3 y 6 meses después del alta hospitalaria. Rev Med Clín. 2021;20215(2):e11052105023.
33. Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology. 2021;27(4):328-37. DOI:10.1016/j.pulmoe.2020.10.013
34. Karchevskaya NA, Skorobogach IM, Cherniak AV, et al. Long-term follow-up study of post-COVID-19 patients. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(3):378-88 (in Russian). DOI:10.26442/00403660.2022.03.201399
35. Samsonova MV, Kontorschikov AS, Cherniaev AL, et al. Long-term pathological changes in lungs after COVID-19. Pulmonologiya. 2021;31(5):571-9 (in Russian).
DOI:10.18093/0869-0189-2021-31-5-571-579
36. Konopka KE, Perry W, Huang T, et al. Usual interstitial pneumonia is the most common finding in surgical lung biopsies from patients with persistent interstitial lung disease following infection with SARS-CoV-2. EClinicalMedicine. 2021;42:101209. DOI:10.1016/j.eclinm.2021.101209
37. Hu Q, Liu Y, Chen C, et al. Reversible bronchiectasis in COVID-19 survivors with acute respiratory distress syndrome: Pseudobronchiectasis. Front Med (Lausanne). 2021;8:739857. DOI:10.3389/fmed.2021.739857
38. Olson A, Hartmann N, Patnaik P, et al. Estimation of the prevalence of progressive fibrosing interstitial lung diseases: Systematic literature review and data from a physician survey. Adv Ther. 2021;38(2):854-67. DOI:10.1007/s12325-020-01578-6
39. Kolb M, Vašáková M. The natural history of progressive fibrosing interstitial lung diseases. Respir Res. 2019;20(1):57. DOI:10.1186/s12931-019-1022-1
40. Ng BH, Ban AY, Nik Abeed NN, Faisal M. Organising pneumonia manifesting as a late-phase complication of COVID-19. BMJ Case Reports. 2021;14(10):e246119.
DOI:10.1136/bcr-2021-246119
41. Golbets E, Kaplan A, Shafat T, et al. Secondary organizing pneumonia after recovery of mild COVID-19 infection. J Med Virol. 2022;94(1):417-23. DOI:10.1002/jmv.27360
42. Averyanov AV, Divakova TI, Balionis OI, et al. Post-COVID lung tissue damage with respiratory failure: Are there any therapeutic tools? Practical Pulmonology. 2021;(3):11-5 (in Russian). DOI:10.24412/2409-6636-2021-12416
Авторы
Е.И. Щепихин*1,2, Е.И. Шмелев1, А.Э. Эргешов1
1ФГБНУ «Центральный научно-исследовательский институт туберкулеза», Москва, Россия; 2ФГБУ «Центральная клиническая больница с поликлиникой» Управления делами Президента РФ, Москва, Россия
*shhepikhin11@yandex.ru
________________________________________________
Evgeniy I. Shchepikhin*1,2, Evgene I. Shmelev1, Atadzhan E. Ergeshov1
1Central Tuberculosis Research Institute, Moscow, Russia; 2Central Clinical Hospital of the Administrative Directorate of the President of the Russian Federation, Moscow, Russia
*shhepikhin11@yandex.ru