Tetenev KF, Bodrova ТN, Bespalova ID, Teteneva АV. Differences in the elastic work of breathing of the pulmonary parenchyma in patients with bronchial asthma and COPD. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):246–252. DOI: 10.26442/00403660.2024.03.202631
Различия в эластических затратах легочной паренхимы у больных бронхиальной астмой и ХОБЛ
Тетенев К.Ф., Бодрова Т.Н., Беспалова И.Д., Тетенева А.В. Различия в эластических затратах легочной паренхимы у больных бронхиальной астмой и ХОБЛ. Терапевтический архив. 2024;96(3):246–252.
DOI: 10.26442/00403660.2024.03.202631
Tetenev KF, Bodrova ТN, Bespalova ID, Teteneva АV. Differences in the elastic work of breathing of the pulmonary parenchyma in patients with bronchial asthma and COPD. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):246–252. DOI: 10.26442/00403660.2024.03.202631
Цель. Определить и сравнить работу дыхания по преодолению эластического сопротивления (Ael) у больных бронхиальной астмой (БА) и хронической обструктивной болезнью легких (ХОБЛ) со сходными изменениями в эластических свойствах паренхимы в одинаковых условиях вентиляционных нарушений (1-я степень). Материалы и методы. Оценивались различия проявлений феномена сходных изменений эластических свойств легких у пациентов с БА и ХОБЛ. Для выявления различий проведено сравнительное исследование по преодолению Аel у пациентов с БА с положительным бронходилатационным (с сальбутамолом) и бронхоконстриктивным (с метахолином) тестами, со сниженной и сохраненной бронхиальной проводимостью (1 и 2-я группы соответственно), с одной стороны, и пациентов с ХОБЛ с отрицательными бронходилатационным и бронхоконстриктивным с метахолином тестами – с другой (3-я группа). У всех обследованных больных выявлено нарушение вентиляции легких 1-й степени (снижение объема форсированного выдоха за 1-ю секунду на 15–35%). Результаты сравнивали между собой и с контрольной группой (4-я группа, некурящие здоровые лица). Все обследованные пациенты сопоставимы по возрасту и полу. Механику дыхания изучали методом одновременной регистрации спирограммы и транспульмонального давления, параметры бронхиальной проводимости и вентиляции определяли с помощью бодиплетизмопрессографии программно-аппаратным комплексом Jager. Результаты и заключение. У пациентов с ХОБЛ Ael статистически повышен (p>0,05), тогда как в обеих группах с БА не изменен. Повышенные эластические затраты у пациентов с ХОБЛ, возможно, связаны с поражением определенного типа сократительных элементов, которые у пациентов с БА на начальных стадиях заболевания сохранены.
Ключевые слова: ХОБЛ, бронхиальная астма, эластическое сопротивление легких, работа по преодолению эластического сопротивления легких
________________________________________________
Aim. To determine and compare the work of breathing to overcome elastic resistance (Ael) in patients with bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) with similar changes in the elastic properties of the parenchyma in the same settings of ventilation disorders (grade 1). Materials and methods. Differences in the manifestations of similar changes in the elastic properties of the lungs in patients with BA and COPD were evaluated. To identify differences, a comparative study was conducted on Аel overcome in BA patients with positive bronchodilator (with salbutamol) and bronchoconstrictor (with methacholine) tests, with reduced and preserved bronchial conductance (groups 1 and 2, respectively), and in COPD patients with negative bronchodilator and bronchoconstrictor tests (group 3). All study patients showed a grade 1 lung ventilation disorder (a decrease in the one-second forced expiratory volume by 15–35%). The results were compared with each other and with the control group (group 4, healthy non-smokers). All study patients were comparable by age and sex. The respiration mechanics was studied using simultaneous registration of spirogram and transpulmonary pressure, and the parameters of bronchial conductance and ventilation were determined using body plethysmopressography using the Jager software and hardware system. Results and conclusion. In COPD patients, Ael was significantly increased (p>0.05), whereas in both BA groups, it was unchanged. Increased elastic work of breathing in patients with COPD may be associated with the involvement of certain types of contractile elements, which are preserved in patients with BA at the initial stages of the disease.
Keywords: COPD, bronchial asthma, elastic resistance of the lungs, elastic work of breathing
1. Авдеев С.Н. Терапия обострения хронической обструктивной болезни легких. РМЖ. 2003;4:182. Режим доступа: https://www.rmj.ru/articles/bolezni_dykhatelnykh_putey/Terapiya_obostreniya_hronicheskoy_obstruktivn.... Ссылка активна на 26.09.2023 [Avdeev SN. Therapy of exacerbation of chronic obstructive pulmonary disease. breast cancer. RMZH. 2003;4:182. Available at: https://www.rmj.ru/articles/bolezni_dykhatelnykh_putey/Terapiya_obostreniya_hronicheskoy_obstruktivn.... Accessed 26.09.023 (in Russian)].
2. Hogg JC. Lung structure and function in COPD. Int J Tuberc Lung Dis. 2008;12(5):467-79.
3. Friedman M. Changing practices in COPD. A new pharmacologic treatment algorithm. Chest. 1995;107(Suppl.):194S-7S. DOI:10.1378/chest.107.5_supplement.194s
4. Гриппи М.А. Патофизиология легких. Изд. 2-е, испр. М.: БИНОМ, 2018 [Grippi MA. Patofisiologiia legkhikh. Izd. 2-e, ispr. Moscow: BINOM, 2018 (in Russian)].
5. Тетенев Ф.Ф., Бодрова Т.Н., Тетенев К.Ф. Вопросы исследования механики дыхания. Пульмонология. 2006;2:109-15 [Tetenev FF, Bodrova TN, Tetenev KF. Discussing points of investigation of respiratory biomechanics. Pulmonologiia. 2006;2:109-15 (in Russian)]. DOI:10.18093/0869-0189-2006-2-109-115
6. Тетенев Ф.Ф., Бодрова Т.Н., Тетенев К.Ф. Механические свойства легких при бронхиальной астме. Терапевтический архив. 2007;3:30-3 [Tetenev FF, Bodrova TN, Tetenev KF. Mechanical properties of the lungs in bronchial asthma. Terapevticheskii Arkhiv (Ter. Arkh.). 2007;3:30-3 (in Russian)].
7. Каменева М.Ю. Исследование эластических свойств легких в клинической практике. Практическая пульмонология. 2017;1:58-63. Режим доступа: https://cyberleninka.ru/article/n/issledovanie-elasticheskih-svoystv-legkih-v-klinicheskoy-praktike/.... Ссылка активна на 26.09.2023 [Kameneva MYu. Study of the elastic properties of the lungs in clinical practice. Practical Pulmonology. 2017;1:58-63. Available at: https://cyberleninka.ru/article/n/issledovanie-elasticheskih-svoystv-legkih-v-klinicheskoy-praktike/.... Accessed 26.09.2023 (in Russian)].
8. Тетенева А.В., Тетенев К.Ф., Бодрова Т.Н., и др. Диагностическое значение эластического сопротивления при бронхиальной астме и хронической обструктивной болезни легких. Бюллетень физиологии и патологии дыхания. 2020;76:34-40 [Teteneva AV, Tetenev KF, Bodrova TN, et al. Diagnostic value of elastic resistance of the lungs in asthma and COPD. Bulletin Physiology and Pathology of Respiration. 2020;76:34-40 (in Russian)]. DOI:10.36604/1998-5029-2020-76-34-40
9. Чучалин АГ., Авдеев С.Н., Айсанов З.Р., и др. Российское респираторное общество. Бронхиальная астма: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022;32(3):393-447 [Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of bronchial asthma. Pulmonologiya. 2022;32(3):393-447 (in Russian)]. DOI:10.18093/0869-0189-2022-32-3-393-447
10. Stead WW, Fry DL, Ebert RV. The elastic properties of the lung in normal men and in patients with chronic pulmonary emphysema. J Lab Clin Med. 1952;40:674-81.
11. Desai JP, Moustarah F. Pulmonary Compliance. 2022. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.
12. Тетенев Ф.Ф., Ушаков В.Ф., Михеев А.В. Механика дыхания у больных с диффузным метатуберкулезным пневмофиброзом. Терапевтический архив. 1973;10:56-7 [Tetenev FF, Ushakov VF, Mikheev AV. Mechanics of respiration in patients with diffuse metatuberculous pneumofibrosis. Terapevticheskii Arkhiv (Ter. Arkh.). 1973;10:56-7 (in Russian)].
13. West J, Alexander J. Studies on respiratory mechanics and the work of breathing in pulmonary fibrosis. Am J Med. 1959;27(4):529-44. DOI:10.1016/0002-9343(59)90038-5
14. Allen GB, Cloutier ME, Larrabee YC, et al. Neither fibrin nor plasminogen activator inhibitor-1 deficiency protects lung function in a mouse model of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;296(3):L277-85. DOI:10.1152/ajplung.90475.2008
15. Lecours R, Legris C. Mechanisms of hyperinflation in asthma. Eur Respir J. 1990;3(6):619-24.
16. Тетенев Ф.Ф. Биомеханика дыхания. Томск: Изд. Томского ун-та, 1981 [Tetenev FF. Biomekhanika dykhaniia. Tomsk: Izd. Tomskogo Un-ta, 1981 (in Russian)].
17. Тетенев К.Ф., Бодрова Т.Н., Тетенев Ф.Ф. Механические свойства легких у больных прогрессирующей дистрофией различной степени тяжести заболевания. Бюллетень сибирской медицины. 2013;12(6):182-8 [Tetenev KF, Bodrova TN, Tetenev FF. Mechanical properties of the lungs in patients with progressive dystrophy of varying severity of the disease. Bulletin of Siberian Medicine. 2013;12(6):182-8 (in Russian)]. DOI:10.20538/1682-0363-2013-6-182-188
________________________________________________
1. Avdeev SN. Therapy of exacerbation of chronic obstructive pulmonary disease. breast cancer. RMZH. 2003;4:182. Available at: https://www.rmj.ru/articles/bolezni_dykhatelnykh_putey/Terapiya_obostreniya_hronicheskoy_obstruktivn.... Accessed 26.09.023 (in Russian).
2. Hogg JC. Lung structure and function in COPD. Int J Tuberc Lung Dis. 2008;12(5):467-79.
3. Friedman M. Changing practices in COPD. A new pharmacologic treatment algorithm. Chest. 1995;107(Suppl.):194S-7S. DOI:10.1378/chest.107.5_supplement.194s
4. Grippi MA. Patofisiologiia legkhikh. Izd. 2-e, ispr. Moscow: BINOM, 2018 (in Russian).
5. Tetenev FF, Bodrova TN, Tetenev KF. Discussing points of investigation of respiratory biomechanics. Pulmonologiia. 2006;2:109-15 (in Russian).
DOI:10.18093/0869-0189-2006-2-109-115
6. Tetenev FF, Bodrova TN, Tetenev KF. Mechanical properties of the lungs in bronchial asthma. Terapevticheskii Arkhiv (Ter. Arkh.). 2007;3:30-3 (in Russian).
7. Kameneva MYu. Study of the elastic properties of the lungs in clinical practice. Practical Pulmonology. 2017;1:58-63. Available at: https://cyberleninka.ru/article/n/issledovanie-elasticheskih-svoystv-legkih-v-klinicheskoy-praktike/.... Accessed 26.09.2023 (in Russian).
8. Teteneva AV, Tetenev KF, Bodrova TN, et al. Diagnostic value of elastic resistance of the lungs in asthma and COPD. Bulletin Physiology and Pathology of Respiration. 2020;76:34-40 (in Russian). DOI:10.36604/1998-5029-2020-76-34-40
9. Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of bronchial asthma. Pulmonologiya. 2022;32(3):393-447 (in Russian).
DOI:10.18093/0869-0189-2022-32-3-393-447
10. Stead WW, Fry DL, Ebert RV. The elastic properties of the lung in normal men and in patients with chronic pulmonary emphysema. J Lab Clin Med. 1952;40:674-81.
11. Desai JP, Moustarah F. Pulmonary Compliance. 2022. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2023.
12. Tetenev FF, Ushakov VF, Mikheev AV. Mechanics of respiration in patients with diffuse metatuberculous pneumofibrosis. Terapevticheskii Arkhiv (Ter. Arkh.). 1973;10:56-7 (in Russian).
13. West J, Alexander J. Studies on respiratory mechanics and the work of breathing in pulmonary fibrosis. Am J Med. 1959;27(4):529-44. DOI:10.1016/0002-9343(59)90038-5
14. Allen GB, Cloutier ME, Larrabee YC, et al. Neither fibrin nor plasminogen activator inhibitor-1 deficiency protects lung function in a mouse model of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;296(3):L277-85. DOI:10.1152/ajplung.90475.2008
15. Lecours R, Legris C. Mechanisms of hyperinflation in asthma. Eur Respir J. 1990;3(6):619-24.
16. Tetenev FF. Biomekhanika dykhaniia. Tomsk: Izd. Tomskogo Un-ta, 1981 (in Russian).
17. Tetenev KF, Bodrova TN, Tetenev FF. Mechanical properties of the lungs in patients with progressive dystrophy of varying severity of the disease. Bulletin of Siberian Medicine. 2013;12(6):182-8 (in Russian). DOI:10.20538/1682-0363-2013-6-182-188
Авторы
К.Ф. Тетенев*1, Т.Н. Бодрова1, И.Д. Беспалова1, А.В. Тетенева1,2
1ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России, Томск, Россия; 2ОГБУЗ «Медико-санитарная часть №2», Томск, Россия
*ktetenev@bk.ru
________________________________________________
Konstantin F. Tetenev*1, Тamara N. Bodrova1, Inna D. Bespalova1, Аnna V. Teteneva1,2
1Siberian State Medical University, Tomsk, Russia; 2Medical and Sanitary Unit №2, Tomsk, Russia
*ktetenev@bk.ru