Цель. В многоцентровом одномоментном исследовании оценить взаимосвязь гиперхолестеринемии (ГХС) с клинико-инструментальными и лабораторными параметрами при остеоартрите (ОА). Материалы и методы. В исследование включены 183 пациента в возрасте 40–75 лет с достоверным диагнозом ОА (АКР) коленных суставов I–III стадии, подписавших информированное согласие. Средний возраст пациентов составил 55,6±10,7 года (от 40 до 75), индекс массы тела – 29,3±6,3 кг/м2, длительность заболевания – 5 [1; 10] лет. На каждого больного заполнялась индивидуальная карта, включающая в себя антропометрические показатели, данные анамнеза и клинического осмотра, оценку боли в коленных суставах по ВАШ, WOMAC, KOOS и сопутствующие заболевания. Всем пациентам проводились стандартная рентгенография и ультразвуковое исследование коленных суставов, лабораторное обследование. Результаты. ГХС выявлена в 59% случаев. В зависимости от ее наличия или отсутствия пациенты распределены в 2 группы. Больные являлись сопоставимыми по индексу массы тела, объему талии и бедер, длительности заболевания, но значимо различались по возрасту. У лиц с повышенными значениями общего холестерина отмечались более высокие показатели боли по ВАШ, суммарного WOMAC и его составляющих, общей оценки состояния здоровья пациента, хуже данные по индексу KOOS и при ультразвуковом обследовании – меньшие размеры хрящевой ткани. При лабораторном обследовании у лиц с ГХС выявлялись большие значения не только холестерина, липопротеидов низкой плотности, триглицеридов, но и СТХ-II, COMP (p<0,05). Однако после стратификации по возрасту многие первоначальные межгрупповые отличия утратили свою значимость, сохранились различия по боли WOMAC. Заключение. Результаты исследования подтвердили высокую частоту ГХС при ОА (59%). У пациентов с ОА при наличии повышенных значений общего холестерина отмечается более интенсивная боль в коленных суставах.
Aim. To evaluate the relationship of hypercholesterolemia (HCE) with clinical, instrumental, and laboratory parameters in osteoarthritis (OA) in a multicenter, cross-sectional study. Materials and methods. The study included 183 patients aged 40–75 years, with a confirmed diagnosis of stage I–III OA (ACR) of the knee joints, who signed an informed consent. The mean age was 55.6±10.7 years (40 to 75), body mass index was 29.3±6.3 kg/m2, and disease duration was 5 [1; 10] years. For each patient, a case record form was filled out, including anthropometric indicators, medical history, clinical examination data, an assessment of knee joint pain according to VAS, WOMAC, KOOS and comorbidities. All patients underwent standard radiography and ultrasound examination of the knee joints and laboratory tests. Results. HCE was detected in 59% of patients. Depending on its presence or absence, patients were divided into two groups. Patients were comparable in body mass index, waist and hip measurement, and disease duration but differed significantly in age. Individuals with elevated total cholesterol levels had higher VAS pain scores, total WOMAC and its components, an overall assessment of the patient's health, a worse KOOS index, and ultrasound findings (reduced cartilage tissue). HCE patients showed high levels of cholesterol, low-density lipoproteins, triglycerides, STX-II, and COMP (p<0.05). However, after stratification by age, many initial intergroup differences became insignificant, and differences in the WOMAC pain score persisted. Conclusion. The results of the study confirmed the high prevalence of HCE in OA patients (59%). Patients with OA and increased total cholesterol have more intense pain in the knee joints.
1. Long H, Liu Q, Yin H, et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022;74(7):1172-83. DOI:10.1002/ art.42089
2. Лила А.М., Алексеева Л.И., Таскина Е.А. и др. Резолюция консенсуса экспертов Российской Федерации по диагностике и лечению остеоартрита для врачей первичного звена. Терапия. 2022;5:119-28 [Lila AM, Alekseeva LI, Taskina EA, et al. Resolution of the consensus of experts of the Russian Federation on the diagnosis and treatment of osteoarthritis for primary care physicians. Terapiya. 2022;5:119-28 (in Russian)]. DOI:10.14412/1996-7012-2022-6-106-116
3. Лила А.М., Таскина Е.А., Алексеева Л.И., Кашеварова Н.Г. Симптоматические препараты замедленного действия (SYSADOA): новые возможности применения. Современная ревматология. 2022;16(2):99-106 [Lila AM, Taskina EA, Alekseeva LI, Kashevarova NG. Symptomatic delayed-acting drugs (SYSADOA): new applications. Modern Rheumatology Journal. 2022;16(2):99-106 (in Russian)]. DOI:10.14412/1996-7012-2022-2-99-106
4. Ching K, Houard X, Berenbaum F, Wen C. Hypertension meets osteoarthritis – revisiting the vascular aetiology hypothesis. Nat Rev Rheumatol. 2021;17(9):533-49. DOI:10.1038/s41584-021-00650-x
5. Macêdo MB, Santos VMOS, Pereira RMR, Fuller R. Association between osteoarthritis and atherosclerosis: A systematic review and meta-analysis. Exp Gerontol. 2022;161:111734. DOI:10.1016/j.exger.2022.111734
6. Swain S, Sarmanova A, Coupland C, et al. Comorbidities in Osteoarthritis: A Systematic Review and Meta-Analysis of Observational Studies. Arthritis Care Res. 2020;72:991-1000. DOI:10.1002/acr.24008
7. Constantino de Campos G, Mundi R, Whittington C, et al. Osteoarthritis, mobilityrelated comorbidities and mortality: an overview of meta-analyses. Ther Adv Musculoskelet Dis. 2020;12:1759720X20981219. DOI:10.1177/1759720X20981219
8. Veronese N, Honvo G, Bruyère O, et al. Knee osteoarthritis and adverse health outcomes: an umbrella review of meta-analyses of observational studies. Aging Clin Exp Res. 2022;35(2):245-52. DOI:10.1007/s40520-022-02289-4
9. Baudart P, Louati K, Marcelli C, et al. Association between osteoarthritis and dyslipidaemia: a systematic literature review and meta-analysis. RMD Open. 2017;3:e000442. DOI:10.1136/rmdopen-2017-000442
10. Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon. 2023;9(5):e15700. DOI:10.1016/j.heliyon.2023.e15700
11. de Munter W, Blom AB, Helsen MM, et al. Cholesterol accumulation caused by low density lipoprotein receptor deficiency or a cholesterol-rich diet results in ectopic bone formation during experimental osteoarthritis. Arthritis Res Ther. 2013;15(6):R178. DOI:10.1186/ar4367
12. Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxford). 2015;54(4):588-600. DOI:10.1093/rheumatology/keu464
13. Xiong J, Long J, Chen X, et al. Dyslipidemia Might Be Associated with an Increased Risk of Osteoarthritis. Biomed Res Int. 2020;15:3105248. DOI:10.1155/2020/3105248
14. Byung WC, Du SK, Hyuck MK, et al. Cross-sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey. J Clin Med. 2021;10:933. DOI:10.3390/jcm10050933
15. Engstrom G, Gerhardsson M, Rollof J, at al. C-reactive protein, metabolic syndrome and incidence of severe hip and knee osteoarthritis. A population-based cohort study. Osteoarthr Cartilage. 2009;17(2):168-73. DOI:10.1016/j.joca.2008.07.003
16. Han CD, Yang IH, Lee WS, et al. Correlation between metabolic syndrome and knee osteoarthritis: data from the Korean National Health and Nutrition Examination Survey (KNHANES). BMC Public Health. 2013;13(1):603. DOI:10.1186/1471-2458-13-603
17. Hussain SM, Wang Y, Cicuttini FM, et al. Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. Seminars in Arthritis and Rheumatism. 2014;43(4):429-36. DOI:10.1016/j.semarthrit.2013.07.013
18. Xie Y, Zhou W, Zhong Z, et al. Metabolic syndrome, hypertension, and hyperglycemia were positively associated with knee osteoarthritis, while dyslipidemia showed no association with knee osteoarthritis. Clin Rheumatol. 2021;40(2):711-24. DOI:10.1007/s10067-020-05216-y
19. Метельская В.А., Шальнова С.А., Деев А.Д., и др. Анализ распространенности показателей, характеризующих атерогенность спектра липопротеинов, у жителей Российской Федерации (по данным исследования ЭССЕ-РФ). Профилактическая медицина. 2016;19(1):15-23 [Metelskaya VA, Shalnova SA, Deev AD, et al. Analysis of atherogenic dyslipidemias prevalence among population of Russian Federation (results of the ESSE-RF Study). Russian Journal of Preventive Medicine. 2016;19(1):15-23 (in Russian)]. DOI:10.17116/profmed201619115-23
20. Ежов М.В., Близнюк С.А., Алексеева И.А., Выгодин В.А. Распространенность гиперхолестеринемии и применения статинов в амбулаторной практике в Российской Федерации. Исследование АЙСБЕРГ – диАгностирование пациентов с гиперхолестеринемиеЙ в уСловиях амБулаторной практики на раннЕм этапе с целью улучшения сеРдечно-сосудистого проГноза. Атеросклероз и Дислипидемии. 2017;4(29):5-17 [Ezhov MV, Bliznyuk SA, Alekseeva IA, Vygodin VA. Prevalence of hypercholesterolemia and statins intake in the outpatient practice in the Russian Federation (ICEBERG study). Journal of Atherosclerosis and dyslipidemias. 2017;4(29):5-17 (in Russian)].
21. Ахмеджанов Н.М., Небиеридзе Д.В., Сафарян А.С. и др. Анализ распространенности ГХС в условиях амбулаторной практики (по данным исследования АРГО): часть 1. Рациональная фармакотерапия в кардиологии. 2015;11(3):253-60 [Akhmedzhanov NM, Nebieridze DV, Safaryan AS, et al. Analysis of prevalence of HCV in outpatient practice (According to ARGO research): Part 1. Rational Pharmacotherapy in Cardiology. 2015;11(3):253-60 (in Russian)].
22. Sun GZ, Li Z, Guo L, et al. High prevalence of dyslipidemia and associated risk factors among rural Chinese adults. Lipids Health Dis. 2014;13:189. DOI:10.1186/1476-511X-13-189
23. Hong N, Lin Y, Ye Z, et al. The relationship between dyslipidemia and inflammation among adults in east coast China: A cross-sectional study. Front Immunol. 2022;13:937201. DOI:10.3389/fimmu.2022.937201
24. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 2013;40(1):195-211. DOI:10.1016/j.pop.2012.11.003
25. Zhou M, Guo Y, Wang D, et al. The cross-sectional and longitudinal effect of hyperlipidemia on knee osteoarthritis: Results from the Dongfeng-Tongji cohort in China. Sci Rep. 2017;7(1):9739. DOI:10.1038/s41598-017-10158-8
26. Zhang K, Ji Y, Dai H, et al. High-Density Lipoprotein Cholesterol and Apolipoprotein A1 in Synovial Fluid: Potential Predictors of Disease Severity of Primary Knee Osteoarthritis. Cartilage. 2021;13(1_suppl.):1465S-73S. DOI:10.1177/19476035211007919
27. Uchida K, Satoh M, Inoue G, et al. CD11c(+) macrophages and levels of TNF-alpha and MMP-3 are increased in synovial and adipose tissues of osteoarthritic mice with hyperlipidaemia. Clin Exp Immunol. 2015;180(3):551-9. DOI:10.1111/cei.12607
28. Corr EM, Cunningham CC, Dunne A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis. 2016;251:197-205. DOI:10.1016/j.atherosclerosis.2016.06.035
29. Ishikawa M, Ito H, Akiyoshi M, et al. Lectin-like oxidized low-density lipoprotein receptor 1 signal is a potent biomarker and therapeutic target for human rheumatoid arthritis. Arthritis Rheum.2012;64(4):1024-34. DOI:10.1002/art.33452
30. Vincenti MP, Brinckerhof CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specifc transcription factors. Arthritis Res. 2002;4(3):157-64. DOI:10.1186/ar401
31. Kyoko M, Kentaro U, Tomonori K, et al. Elevation of MMP1 and ADAMTS5 mRNA expression in glenohumeral synovia of patients with hypercholesterolemia. J Orthop Surg Res. 2022;17(1):97. DOI:10.1186/s13018-022-02998-6
32. Su Z, Zong Z, Deng J, et al. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients. 2022;14(19):3984. DOI:10.3390/nu14193984
33. de Munter W, van der Kraan PM, van den Berg WB, et al. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis? Rheumatology (Oxford). 2016;55(1):16-24. DOI:10.1093/rheumatology/kev270
34. Zushi S, Akagi M, Kishimoto H, et al. Induction of bovine articular chondrocyte senescence with oxidized low-density lipoprotein through lectin-like oxidized low-density lipoprotein receptor 1. Arthritis Rheum. 2009;60(10):3007-16. DOI:10.1002/art.24816
35. Gkretsi V, Simopoulou T, Tsezou A. Lipid metabolism and osteoarthritis: lessons from atherosclerosis. Prog Lipid Res. 2011;50(2):133-40. DOI:10.1016/j.plipres.2010.11.001
36. Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis. 2017;20 (2):131-40. DOI:10.1111/1756-185X.13061
37. Farnaghi S, Prasadam I, Cai G, et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterolinduced osteoarthritis. FASEB J. 2017;31(1):356-67. DOI:10.1096/ fj.201600600R
________________________________________________
1. Long H, Liu Q, Yin H, et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022;74(7):1172-83. DOI:10.1002/ art.42089
2. Lila AM, Alekseeva LI, Taskina EA, et al. Resolution of the consensus of experts of the Russian Federation on the diagnosis and treatment of osteoarthritis for primary care physicians. Terapiya. 2022;5:119-28 (in Russian). DOI:10.14412/1996-7012-2022-6-106-116
3. Lila AM, Taskina EA, Alekseeva LI, Kashevarova NG. Symptomatic delayed-acting drugs (SYSADOA): new applications. Modern Rheumatology Journal. 2022;16(2):99-106 (in Russian). DOI:10.14412/1996-7012-2022-2-99-106
4. Ching K, Houard X, Berenbaum F, Wen C. Hypertension meets osteoarthritis – revisiting the vascular aetiology hypothesis. Nat Rev Rheumatol. 2021;17(9):533-49. DOI:10.1038/s41584-021-00650-x
5. Macêdo MB, Santos VMOS, Pereira RMR, Fuller R. Association between osteoarthritis and atherosclerosis: A systematic review and meta-analysis. Exp Gerontol. 2022;161:111734. DOI:10.1016/j.exger.2022.111734
6. Swain S, Sarmanova A, Coupland C, et al. Comorbidities in Osteoarthritis: A Systematic Review and Meta-Analysis of Observational Studies. Arthritis Care Res. 2020;72:991-1000. DOI:10.1002/acr.24008
7. Constantino de Campos G, Mundi R, Whittington C, et al. Osteoarthritis, mobilityrelated comorbidities and mortality: an overview of meta-analyses. Ther Adv Musculoskelet Dis. 2020;12:1759720X20981219. DOI:10.1177/1759720X20981219
8. Veronese N, Honvo G, Bruyère O, et al. Knee osteoarthritis and adverse health outcomes: an umbrella review of meta-analyses of observational studies. Aging Clin Exp Res. 2022;35(2):245-52. DOI:10.1007/s40520-022-02289-4
9. Baudart P, Louati K, Marcelli C, et al. Association between osteoarthritis and dyslipidaemia: a systematic literature review and meta-analysis. RMD Open. 2017;3:e000442. DOI:10.1136/rmdopen-2017-000442
10. Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon. 2023;9(5):e15700. DOI:10.1016/j.heliyon.2023.e15700
11. de Munter W, Blom AB, Helsen MM, et al. Cholesterol accumulation caused by low density lipoprotein receptor deficiency or a cholesterol-rich diet results in ectopic bone formation during experimental osteoarthritis. Arthritis Res Ther. 2013;15(6):R178. DOI:10.1186/ar4367
12. Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxford). 2015;54(4):588-600. DOI:10.1093/rheumatology/keu464
13. Xiong J, Long J, Chen X, et al. Dyslipidemia Might Be Associated with an Increased Risk of Osteoarthritis. Biomed Res Int. 2020;15:3105248. DOI:10.1155/2020/3105248
14. Byung WC, Du SK, Hyuck MK, et al. Cross-sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey. J Clin Med. 2021;10:933. DOI:10.3390/jcm10050933
15. Engstrom G, Gerhardsson M, Rollof J, at al. C-reactive protein, metabolic syndrome and incidence of severe hip and knee osteoarthritis. A population-based cohort study. Osteoarthr Cartilage. 2009;17(2):168-73. DOI:10.1016/j.joca.2008.07.003
16. Han CD, Yang IH, Lee WS, et al. Correlation between metabolic syndrome and knee osteoarthritis: data from the Korean National Health and Nutrition Examination Survey (KNHANES). BMC Public Health. 2013;13(1):603. DOI:10.1186/1471-2458-13-603
17. Hussain SM, Wang Y, Cicuttini FM, et al. Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. Seminars in Arthritis and Rheumatism. 2014;43(4):429-36. DOI:10.1016/j.semarthrit.2013.07.013
18. Xie Y, Zhou W, Zhong Z, et al. Metabolic syndrome, hypertension, and hyperglycemia were positively associated with knee osteoarthritis, while dyslipidemia showed no association with knee osteoarthritis. Clin Rheumatol. 2021;40(2):711-24. DOI:10.1007/s10067-020-05216-y
19. Metelskaya VA, Shalnova SA, Deev AD, et al. Analysis of atherogenic dyslipidemias prevalence among population of Russian Federation (results of the ESSE-RF Study). Russian Journal of Preventive Medicine. 2016;19(1):15-23 (in Russian). DOI:10.17116/profmed201619115-23
20. Ezhov MV, Bliznyuk SA, Alekseeva IA, Vygodin VA. Prevalence of hypercholesterolemia and statins intake in the outpatient practice in the Russian Federation (ICEBERG study). Journal of Atherosclerosis and dyslipidemias. 2017;4(29):5-17 (in Russian).
21. Akhmedzhanov NM, Nebieridze DV, Safaryan AS, et al. Analysis of prevalence of HCV in outpatient practice (According to ARGO research): Part 1. Rational Pharmacotherapy in Cardiology. 2015;11(3):253-60 (in Russian).
22. Sun GZ, Li Z, Guo L, et al. High prevalence of dyslipidemia and associated risk factors among rural Chinese adults. Lipids Health Dis. 2014;13:189. DOI:10.1186/1476-511X-13-189
23. Hong N, Lin Y, Ye Z, et al. The relationship between dyslipidemia and inflammation among adults in east coast China: A cross-sectional study. Front Immunol. 2022;13:937201. DOI:10.3389/fimmu.2022.937201
24. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 2013;40(1):195-211. DOI:10.1016/j.pop.2012.11.003
25. Zhou M, Guo Y, Wang D, et al. The cross-sectional and longitudinal effect of hyperlipidemia on knee osteoarthritis: Results from the Dongfeng-Tongji cohort in China. Sci Rep. 2017;7(1):9739. DOI:10.1038/s41598-017-10158-8
26. Zhang K, Ji Y, Dai H, et al. High-Density Lipoprotein Cholesterol and Apolipoprotein A1 in Synovial Fluid: Potential Predictors of Disease Severity of Primary Knee Osteoarthritis. Cartilage. 2021;13(1_suppl.):1465S-73S. DOI:10.1177/19476035211007919
27. Uchida K, Satoh M, Inoue G, et al. CD11c(+) macrophages and levels of TNF-alpha and MMP-3 are increased in synovial and adipose tissues of osteoarthritic mice with hyperlipidaemia. Clin Exp Immunol. 2015;180(3):551-9. DOI:10.1111/cei.12607
28. Corr EM, Cunningham CC, Dunne A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis. 2016;251:197-205. DOI:10.1016/j.atherosclerosis.2016.06.035
29. Ishikawa M, Ito H, Akiyoshi M, et al. Lectin-like oxidized low-density lipoprotein receptor 1 signal is a potent biomarker and therapeutic target for human rheumatoid arthritis. Arthritis Rheum.2012;64(4):1024-34. DOI:10.1002/art.33452
30. Vincenti MP, Brinckerhof CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specifc transcription factors. Arthritis Res. 2002;4(3):157-64. DOI:10.1186/ar401
31. Kyoko M, Kentaro U, Tomonori K, et al. Elevation of MMP1 and ADAMTS5 mRNA expression in glenohumeral synovia of patients with hypercholesterolemia. J Orthop Surg Res. 2022;17(1):97. DOI:10.1186/s13018-022-02998-6
32. Su Z, Zong Z, Deng J, et al. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients. 2022;14(19):3984. DOI:10.3390/nu14193984
33. de Munter W, van der Kraan PM, van den Berg WB, et al. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis? Rheumatology (Oxford). 2016;55(1):16-24. DOI:10.1093/rheumatology/kev270
34. Zushi S, Akagi M, Kishimoto H, et al. Induction of bovine articular chondrocyte senescence with oxidized low-density lipoprotein through lectin-like oxidized low-density lipoprotein receptor 1. Arthritis Rheum. 2009;60(10):3007-16. DOI:10.1002/art.24816
35. Gkretsi V, Simopoulou T, Tsezou A. Lipid metabolism and osteoarthritis: lessons from atherosclerosis. Prog Lipid Res. 2011;50(2):133-40. DOI:10.1016/j.plipres.2010.11.001
36. Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis. 2017;20 (2):131-40. DOI:10.1111/1756-185X.13061
37. Farnaghi S, Prasadam I, Cai G, et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterolinduced osteoarthritis. FASEB J. 2017;31(1):356-67. DOI:10.1096/ fj.201600600R
1ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия; 2ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово, Россия; 3ГУЗ «Ульяновская областная клиническая больница», Ульяновск, Россия
*braell@mail.ru
________________________________________________
Elena A. Taskina*1, Liudmila I. Alekseeva1, Natalia G. Kashevarova1, Ekaterina A. Strebkova1, Kirill M. Mikhaylov1, Evgeniia P. Sharapova1, Natalya M. Savushkina1, Olga G. Alekseeva1, Tatiana A. Raskina2, Julia V. Averkieva2, Ekaterina V. Usova2, Irina B. Vinogradova3, Oksana V. Salnikova3, Aleksandra S. Markelova3, Aleksander M. Lila1
1Nasonova Research Institute of Rheumatology, Moscow, Russia; 2Kemerovo State Medical University, Kemerovo, Russia; 3Ulyanovsk Regional Clinical Hospital, Ulyanovsk, Russia
*braell@mail.ru