Yurpolskaya LA. 4D flow MRI: value and clinical perspectives in patients with pathology of the heart and great vessels (part 2): A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(7):701–705.
DOI: 10.26442/00403660.2024.07.202786
4D МР-визуализация потока: ценность и клинические перспективы у пациентов с патологией сердца и магистральных сосудов (2-я часть)
Юрпольская Л.А. 4D МР-визуализация потока: ценность и клинические перспективы у пациентов с патологией сердца и магистральных сосудов (2-я часть). Терапевтический архив. 2024;96(7):701–705.
DOI: 10.26442/00403660.2024.07.202786
Yurpolskaya LA. 4D flow MRI: value and clinical perspectives in patients with pathology of the heart and great vessels (part 2): A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(7):701–705.
DOI: 10.26442/00403660.2024.07.202786
Изучение кровотока становится новым трендом в кардиологии и сердечно-сосудистой хирургии. На основе литературных и собственных данных представлен обзор применения 4D магнитно-резонансной визуализации потока при заболеваниях сердца и сосудов. Подробно изложено основное состояние вопроса об особенностях применения методики при разных патологиях сердечно-сосудистой системы, рассмотрены приоритеты, ограничения и перспективные направления использования методики с учетом целей практической медицины. Обзор состоит из 2 частей: 1-я часть посвящена общим вопросам, ограничениям методики и 4D-картированию потока у пациентов с поражением магистральных сосудов; во 2-й части акцент сделан на использование 4D магнитно-резонансного томографического потока при изучении внутрижелудочкового кровотока и на применение методики при врожденных пороках сердца и сосудов.
The study of blood flow is becoming a new trend in cardiology and cardiovascular surgery. Based on the literature and our own data, a review is presented on the use of 4D flow in diseases of the heart and blood vessels. The main state of the question about the features of the application of the technique in various pathologies of the cardiovascular system is described in detail, the priorities, limitations and promising directions of the technique application are considered taking into account the goals of practical medicine. The review consists of two parts. The first is devoted to general issues, limitations of the technique, and issues of 4D flow mapping in patients with lesions of the great vessels. In the second part, the emphasis is on the use of 4D flow MRI in the study of intraventricular blood flow and the application of the technique in congenital heart and vascular diseases.
Keywords: 4D Flow, cardiovascular diseases, hemodynamics, magnetic resonance imaging
1. Юрпольская Л.А. 4D МР-визуализация потока: ценность и клинические перспективы у пациентов с патологией сердца и магистральных сосудов. Терапевтический архив. 2024;96(4):391-5 [Yurpolskaya LA. 4D flow MRI: value and clinical perspectives in patients with pathology of the heart and great vessels. A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(4):391-5 (in Russian)]. DOI:10.26442/00403660.2024.04.202683
2. Svalbring E, Fredriksson A, Eriksson J, et al. Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI. PLoS One. 2016;11(8):e0161391. DOI:10.1371/journal.pone.0161391
3. Rutkowski DR, Barton GP, François CJ, et al. Sex Differences in Cardiac Flow Dynamics of Healthy Volunteers. Radiol Cardiothorac Imaging. 2020;2(1). DOI:10.1148/ryct.2020190058
4. Ashkir Z, Myerson S, Neubauer S, et al. Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function. Front Cardiovasc Med. 2022;9:866131. DOI:10.3389/fcvm.2022.866131
5. Demirkiran A, van Ooij P, Westenberg JJM, et al. Clinical intra-cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Eur Heart J Cardiovasc Imaging. 2022;23(2):154-65. DOI:10.1093/ehjci/jeab112
6. Kanski M, Arvidsson PM, Töger J, et al. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J Cardiovasc Magn Reson. 2015;17:111. DOI:10.1186/s12968-015-0211-4
7. Eriksson J, Bolger AF, Ebbers T, Carlhäll CJ. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2013;14(5):417-24. DOI:10.1093/ehjci/jes159
8. Garg P, Crandon S, Swoboda PP, et al. Left ventricular blood flow kinetic energy after myocardial infarction – insights from 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2018;20(1):61. DOI:10.1186/s12968-018-0483-6
9. Sakakibara T, Suwa K, Ushio T, et al. Intra-Left Ventricular Hemodynamics Assessed with 4D Flow Magnetic Resonance Imaging in Patients with Left Ventricular Thrombus. Int Heart J. 2021;62(6):1287-96. DOI:10.1536/ihj.20-792
10. van Ooij P, Allen BD, Contaldi C, et al. 4D flow MRI and T1-Mapping: Assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J Magn Reson Imaging. 2016;43(1):107-14. DOI:10.1002/jmri.24962
11. Bolger AF, Heiberg E, Karlsson M, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(5):741-7. DOI:10.1080/10976640701544530
12. Stoll VM, Loudon M, Eriksson J, et al. Test-retest variability of left ventricular 4D flow cardiovascular magnetic resonance measurements in healthy subjects. J Cardiovasc Magn Reson. 2018;20(1):15. DOI:10.1186/s12968-018-0432-4
13. Zajac J, Eriksson J, Dyverfeldt P, et al. Turbulent kinetic energy in normal and myopathic left ventricles. J Magn Reson Imaging. 2015;41(4):1021-9. DOI:10.1002/jmri.24633
14. Browning JR, Hertzberg JR, Schroeder JD, Fenster BE. 4D Flow Assessment of Vorticity in Right Ventricular Diastolic Dysfunction. Bioengineering (Basel). 2017;4(2). DOI:10.3390/bioengineering4020030
15. Kim H, Sheitt H, Wilton SB, et al. Left Ventricular Flow Distribution as a Novel Flow Biomarker in Atrial Fibrillation. Front Bioeng Biotechnol. 2021;9:725121. DOI:10.3389/fbioe.2021.725121
16. Barker N, Fidock B, Johns CS, et al. A Systematic Review of Right Ventricular Diastolic Assessment by 4D Flow CMR. Biomed Res Int. 2019;2019:6074984. DOI:10.1155/2019/6074984
17. Pedrizzetti G, Arvidsson PM, Töger J, et al. On estimating intraventricular hemodynamic forces from endocardial dynamics: A comparative study with 4D flow MRI. J Biomech. 2017;60:203-10. DOI:10.1016/j.jbiomech.2017.06.046
18. Eriksson J, Bolger AF, Ebbers T, Carlhäll CJ. Assessment of left ventricular hemodynamic forces in healthy subjects and patients with dilated cardiomyopathy using 4D flow MRI. Physiol Rep. 2016;4(3). DOI:10.14814/phy2.12685
19. Töger J, Arvidsson PM, Bock J, et al. Hemodynamic forces in the left and right ventricles of the human heart using 4D flow magnetic resonance imaging: Phantom validation, reproducibility, sensitivity to respiratory gating and free analysis software. PLoS One. 2018;13(4):e0195597. DOI:10.1371/journal.pone.0195597
20. Warmerdam E, Krings GJ, Leiner T, Grotenhuis HB. Three-dimensional and four-dimensional flow assessment in congenital heart disease. Heart. 2020;106(6):421-6. DOI:10.1136/heartjnl-2019-315797
21. Rizk J. 4D flow MRI applications in congenital heart disease. Eur Radiol. 2021;31(2):1160-74. DOI:10.1007/s00330-020-07210-z
22. Voges I, Kees J, Jerosch-Herold M, et al. Aortic stiffening and its impact on left atrial volumes and function in patients after successful coarctation repair: a multiparametric cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):56. DOI:10.1186/s12968-016-0278-6
23. Catapano F, Pambianchi G, Cundari G, et al. 4D flow imaging of the thoracic aorta: is there an added clinical value? Cardiovasc Diagn Ther. 2020;10(4):1068-89.
DOI:10.21037/cdt-20-452
24. Юрпольская Л.А., Шляппо М.А., Макаренко В.Н., и др. Методика 4D магнитно-резонансной томографии потока в изучении кровотока у пациентов с коарктацией аорты в отдаленные сроки после операции. Кардиология. 2020;60(8):54-64 [Yurpolskaya LA, Shlyappo MA, Makarenko VN, et al. 4D FLOW Magnetic Resonance Imaging in the Study of Blood Flow in Patients With Aortic Coarctation in the Long-Term After Surgery. Kardiologiia. 2020;60(8):54-64 (in Russian)]. DOI:10.18087/cardio.2020.8.n1094
25. Riesenkampff E, Fernandes JF, Meier S, et al. Pressure fields by flow-sensitive, 4D, velocity-encoded CMR in patients with aortic coarctation. JACC Cardiovasc Imaging. 2014;7(9):920-6. DOI:10.1016/j.jcmg.2014.03.017
26. Shiina Y, Inai K, Miyazaki S, Nagao M. Aortic Vorticity, Helicity, and Aortopathy in Adult Patients with Tetralogy of Fallot: Pilot Study Using Four-Dimensional Flow Magnetic Resonance Images. Pediatr Cardiol. 2021;42(1):169-77. DOI:10.1007/s00246-020-02466-0
27. Sjöberg P, Bidhult S, Bock J, et al. Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI. Eur Radiol. 2018;28(10):4066-76. DOI:10.1007/s00330-018-5385-3
28. Schäfer M, Barker AJ, Jaggers J, et al. Abnormal aortic flow conduction is associated with increased viscous energy loss in patients with repaired tetralogy of Fallot. Eur J Cardiothorac Surg. 2020;57(3):588-95. DOI:10.1093/ejcts/ezz246
29. Hu L, Ouyang R, Sun A, et al. Pulmonary artery hemodynamic assessment of blood flow characteristics in repaired tetralogy of Fallot patients versus healthy child volunteers. Quant Imaging Med Surg. 2020;10(5):921-33. DOI:10.21037/qims.2020.03.23
30. Jeong D, Anagnostopoulos PV, Roldan-Alzate A, et al. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg. 2015;149(5):1339-47. DOI:10.1016/j.jtcvs.2014.11.085
31. Jarvis K, Schnell S, Barker AJ, et al. Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources. Magn Reson Med. 2019;81(2):1205-18. DOI:10.1002/mrm.27455
32. Sjöberg P, Heiberg E, Wingren P, et al. Decreased Diastolic Ventricular Kinetic Energy in Young Patients with Fontan Circulation Demonstrated by Four-Dimensional Cardiac Magnetic Resonance Imaging. Pediatr Cardiol. 2017;38(4):669-80. DOI:10.1007/s00246-016-1565-6
33. Kamphuis VP, Elbaz MSM, van den Boogaard PJ, et al. Disproportionate intraventricular viscous energy loss in Fontan patients: analysis by 4D flow MRI. Eur Heart J Cardiovasc Imaging. 2019;20(3):323-33. DOI:10.1093/ehjci/jey096
34. Raimondi F, Martins D, Coenen R, et al. Prevalence of Venovenous Shunting and High-Output State Quantified with 4D Flow MRI in Patients with Fontan Circulation. Radiol Cardiothorac Imaging. 2021;3(6):e210161. DOI:10.1148/ryct.210161
35. Valverde I, Nordmeyer S, Uribe S, et al. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson. 2012;14(1):25. DOI:10.1186/1532-429X-14-25
36. Tsuneta S, Oyama-Manabe N, Takeda A, et al. The detection of retrograde flow from the left anterior descending artery into the main pulmonary artery by 4D-flow cardiac magnetic resonance in a patient with Bland-White-Garland syndrome. Eur Heart J Cardiovasc Imaging. 2019;20(4):488. DOI:10.1093/ehjci/jey222
37. Guirgis L, Gouton M, Hascoet S, Paul JF. Four-dimensional flow cardiac magnetic resonance visualization and quantification of a large coronary fistula. Eur Heart J. 2019;40(35):2995. DOI:10.1093/eurheartj/ehz478
38. Oyama-Manabe N, Aikawа T, Tsuneta S, Manabe O. Clinical Applications of 4D Flow MR Imaging in Aortic Valvular and Congenital Heart Disease. Magn Reson Med Sci.
2022;21:319-26. DOI:10.2463/mrms.rev.2021-0030
39. Lantz J, Gupta V, Henriksson L, et al. Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI. Radiology. 2018;289(1):51-8. DOI:10.1148/radiol.2018173017
40. Wiesemann S, Schmitter S, Demir A, et al. Impact of sequence type and field strength (1.5, 3, and 7T) on 4D flow MRI hemodynamic aortic parameters in healthy volunteers. Magn Reson Med. 2021;85(2):721-33. DOI:10.1002/mrm.28450
________________________________________________
1. Yurpolskaya LA. 4D flow MRI: value and clinical perspectives in patients with pathology of the heart and great vessels. A review. Terapevticheskii Arkhiv (Ter. Arkh.).
2024;96(4):391-5 (in Russian). DOI:10.26442/00403660.2024.04.202683
2. Svalbring E, Fredriksson A, Eriksson J, et al. Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI. PLoS One. 2016;11(8):e0161391. DOI:10.1371/journal.pone.0161391
3. Rutkowski DR, Barton GP, François CJ, et al. Sex Differences in Cardiac Flow Dynamics of Healthy Volunteers. Radiol Cardiothorac Imaging. 2020;2(1). DOI:10.1148/ryct.2020190058
4. Ashkir Z, Myerson S, Neubauer S, et al. Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function. Front Cardiovasc Med. 2022;9:866131. DOI:10.3389/fcvm.2022.866131
5. Demirkiran A, van Ooij P, Westenberg JJM, et al. Clinical intra-cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Eur Heart J Cardiovasc Imaging. 2022;23(2):154-65. DOI:10.1093/ehjci/jeab112
6. Kanski M, Arvidsson PM, Töger J, et al. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J Cardiovasc Magn Reson. 2015;17:111. DOI:10.1186/s12968-015-0211-4
7. Eriksson J, Bolger AF, Ebbers T, Carlhäll CJ. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2013;14(5):417-24. DOI:10.1093/ehjci/jes159
8. Garg P, Crandon S, Swoboda PP, et al. Left ventricular blood flow kinetic energy after myocardial infarction – insights from 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2018;20(1):61. DOI:10.1186/s12968-018-0483-6
9. Sakakibara T, Suwa K, Ushio T, et al. Intra-Left Ventricular Hemodynamics Assessed with 4D Flow Magnetic Resonance Imaging in Patients with Left Ventricular Thrombus. Int Heart J. 2021;62(6):1287-96. DOI:10.1536/ihj.20-792
10. van Ooij P, Allen BD, Contaldi C, et al. 4D flow MRI and T1-Mapping: Assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J Magn Reson Imaging. 2016;43(1):107-14. DOI:10.1002/jmri.24962
11. Bolger AF, Heiberg E, Karlsson M, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(5):741-7. DOI:10.1080/10976640701544530
12. Stoll VM, Loudon M, Eriksson J, et al. Test-retest variability of left ventricular 4D flow cardiovascular magnetic resonance measurements in healthy subjects. J Cardiovasc Magn Reson. 2018;20(1):15. DOI:10.1186/s12968-018-0432-4
13. Zajac J, Eriksson J, Dyverfeldt P, et al. Turbulent kinetic energy in normal and myopathic left ventricles. J Magn Reson Imaging. 2015;41(4):1021-9. DOI:10.1002/jmri.24633
14. Browning JR, Hertzberg JR, Schroeder JD, Fenster BE. 4D Flow Assessment of Vorticity in Right Ventricular Diastolic Dysfunction. Bioengineering (Basel). 2017;4(2). DOI:10.3390/bioengineering4020030
15. Kim H, Sheitt H, Wilton SB, et al. Left Ventricular Flow Distribution as a Novel Flow Biomarker in Atrial Fibrillation. Front Bioeng Biotechnol. 2021;9:725121. DOI:10.3389/fbioe.2021.725121
16. Barker N, Fidock B, Johns CS, et al. A Systematic Review of Right Ventricular Diastolic Assessment by 4D Flow CMR. Biomed Res Int. 2019;2019:6074984. DOI:10.1155/2019/6074984
17. Pedrizzetti G, Arvidsson PM, Töger J, et al. On estimating intraventricular hemodynamic forces from endocardial dynamics: A comparative study with 4D flow MRI. J Biomech. 2017;60:203-10. DOI:10.1016/j.jbiomech.2017.06.046
18. Eriksson J, Bolger AF, Ebbers T, Carlhäll CJ. Assessment of left ventricular hemodynamic forces in healthy subjects and patients with dilated cardiomyopathy using 4D flow MRI. Physiol Rep. 2016;4(3). DOI:10.14814/phy2.12685
19. Töger J, Arvidsson PM, Bock J, et al. Hemodynamic forces in the left and right ventricles of the human heart using 4D flow magnetic resonance imaging: Phantom validation, reproducibility, sensitivity to respiratory gating and free analysis software. PLoS One. 2018;13(4):e0195597. DOI:10.1371/journal.pone.0195597
20. Warmerdam E, Krings GJ, Leiner T, Grotenhuis HB. Three-dimensional and four-dimensional flow assessment in congenital heart disease. Heart. 2020;106(6):421-6. DOI:10.1136/heartjnl-2019-315797
21. Rizk J. 4D flow MRI applications in congenital heart disease. Eur Radiol. 2021;31(2):1160-74. DOI:10.1007/s00330-020-07210-z
22. Voges I, Kees J, Jerosch-Herold M, et al. Aortic stiffening and its impact on left atrial volumes and function in patients after successful coarctation repair: a multiparametric cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):56. DOI:10.1186/s12968-016-0278-6
23. Catapano F, Pambianchi G, Cundari G, et al. 4D flow imaging of the thoracic aorta: is there an added clinical value? Cardiovasc Diagn Ther. 2020;10(4):1068-89.
DOI:10.21037/cdt-20-452
24. Yurpolskaya LA, Shlyappo MA, Makarenko VN, et al. 4D FLOW Magnetic Resonance Imaging in the Study of Blood Flow in Patients With Aortic Coarctation in the Long-Term After Surgery. Kardiologiia. 2020;60(8):54-64 (in Russian). DOI:10.18087/cardio.2020.8.n1094
25. Riesenkampff E, Fernandes JF, Meier S, et al. Pressure fields by flow-sensitive, 4D, velocity-encoded CMR in patients with aortic coarctation. JACC Cardiovasc Imaging. 2014;7(9):920-6. DOI:10.1016/j.jcmg.2014.03.017
26. Shiina Y, Inai K, Miyazaki S, Nagao M. Aortic Vorticity, Helicity, and Aortopathy in Adult Patients with Tetralogy of Fallot: Pilot Study Using Four-Dimensional Flow Magnetic Resonance Images. Pediatr Cardiol. 2021;42(1):169-77. DOI:10.1007/s00246-020-02466-0
27. Sjöberg P, Bidhult S, Bock J, et al. Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI. Eur Radiol. 2018;28(10):4066-76. DOI:10.1007/s00330-018-5385-3
28. Schäfer M, Barker AJ, Jaggers J, et al. Abnormal aortic flow conduction is associated with increased viscous energy loss in patients with repaired tetralogy of Fallot. Eur J Cardiothorac Surg. 2020;57(3):588-95. DOI:10.1093/ejcts/ezz246
29. Hu L, Ouyang R, Sun A, et al. Pulmonary artery hemodynamic assessment of blood flow characteristics in repaired tetralogy of Fallot patients versus healthy child volunteers. Quant Imaging Med Surg. 2020;10(5):921-33. DOI:10.21037/qims.2020.03.23
30. Jeong D, Anagnostopoulos PV, Roldan-Alzate A, et al. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg. 2015;149(5):1339-47. DOI:10.1016/j.jtcvs.2014.11.085
31. Jarvis K, Schnell S, Barker AJ, et al. Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources. Magn Reson Med. 2019;81(2):1205-18. DOI:10.1002/mrm.27455
32. Sjöberg P, Heiberg E, Wingren P, et al. Decreased Diastolic Ventricular Kinetic Energy in Young Patients with Fontan Circulation Demonstrated by Four-Dimensional Cardiac Magnetic Resonance Imaging. Pediatr Cardiol. 2017;38(4):669-80. DOI:10.1007/s00246-016-1565-6
33. Kamphuis VP, Elbaz MSM, van den Boogaard PJ, et al. Disproportionate intraventricular viscous energy loss in Fontan patients: analysis by 4D flow MRI. Eur Heart J Cardiovasc Imaging. 2019;20(3):323-33. DOI:10.1093/ehjci/jey096
34. Raimondi F, Martins D, Coenen R, et al. Prevalence of Venovenous Shunting and High-Output State Quantified with 4D Flow MRI in Patients with Fontan Circulation. Radiol Cardiothorac Imaging. 2021;3(6):e210161. DOI:10.1148/ryct.210161
35. Valverde I, Nordmeyer S, Uribe S, et al. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson. 2012;14(1):25. DOI:10.1186/1532-429X-14-25
36. Tsuneta S, Oyama-Manabe N, Takeda A, et al. The detection of retrograde flow from the left anterior descending artery into the main pulmonary artery by 4D-flow cardiac magnetic resonance in a patient with Bland-White-Garland syndrome. Eur Heart J Cardiovasc Imaging. 2019;20(4):488. DOI:10.1093/ehjci/jey222
37. Guirgis L, Gouton M, Hascoet S, Paul JF. Four-dimensional flow cardiac magnetic resonance visualization and quantification of a large coronary fistula. Eur Heart J. 2019;40(35):2995. DOI:10.1093/eurheartj/ehz478
38. Oyama-Manabe N, Aikawа T, Tsuneta S, Manabe O. Clinical Applications of 4D Flow MR Imaging in Aortic Valvular and Congenital Heart Disease. Magn Reson Med Sci.
2022;21:319-26. DOI:10.2463/mrms.rev.2021-0030
39. Lantz J, Gupta V, Henriksson L, et al. Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI. Radiology. 2018;289(1):51-8. DOI:10.1148/radiol.2018173017
40. Wiesemann S, Schmitter S, Demir A, et al. Impact of sequence type and field strength (1.5, 3, and 7T) on 4D flow MRI hemodynamic aortic parameters in healthy volunteers. Magn Reson Med. 2021;85(2):721-33. DOI:10.1002/mrm.28450
Авторы
Л.А. Юрпольская*
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Минздрава России, Москва, Россия
*layurpolskaya@bakulev.ru
________________________________________________
Lyudmila A. Yurpolskaya*
Bakulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russia
*layurpolskaya@bakulev.ru