Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ферритин как биомаркер старения: геропротекторные пептиды стандартизированного гидролизата плаценты человека
DOI: 10.26442/00403660.2024.08.202811
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
________________________________________________
Gromova OA, Torshin IIu, Chuchalin AG. Ferritin as a biomarker of aging: geroprotective peptides of standardized human placental hydrolysate. A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(8):826–835.
DOI: 10.26442/00403660.2024.08.202811
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: старение, воспаление, перегрузка железом, ферритин, ферроптоз, протеомика
________________________________________________
Ferritin, an iron transport protein, is an acute phase protein of inflammation and oxidative stress (OS), a biomarker of cytolysis and ferroptosis. Inflammation, OS and iron overload are characteristic processes of the pathophysiology of aging. Human placental hydrolysates (HPHs) are promising hepatoprotective agents for anti-aging therapy. The goal of the team of authors was to systematize data on ferritin as a marker of aging and to identify peptides that counteract the aging pathophysiology, including through the regulation of iron and ferritin metabolism, in the HPH Laennec (manufactured by Japan Bioproducts). The results of basic and clinical studies confirm the above relationships and indicate that blood ferritin levels characterize the chronological and biological aging of the human body.
Keywords: aging, inflammation, iron overload, ferritin, ferroptosis, proteomics
2. May M, Barlow D, Ibrahim R, Houseknecht KL. Mechanisms Underlying Antipsychotic-Induced NAFLD and Iron Dysregulation: A Multi-Omic Approach. Biomedicines. 2022;10(6):1225. DOI:10.3390/biomedicines10061225
3. Wang W, Knovich MA, Coffman LG, et al. Serum ferritin: Past, present and future. Biochim Biophys Acta. 2010;1800(8):760-9. DOI:10.1016/j.bbagen.2010.03.011
4. Ruscitti P, Di Benedetto P, Berardicurti O, et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020;10(1):12232. DOI:10.1038/s41598-020-69031-w
5. Каледа М.И., Федоров Е.С. Значение гиперферритинемии как диагностического и прогностического биомаркера. Современная ревматология. 2022;16(2):74-80 [Kaleda MI, Fedorov ES. Significance of hyperferritinemia as a diagnostic and prognostic biomarker. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2022;16(2):74-80 (in Russian)]. DOI:10.14412/1996-7012-2022-2-74-80
6. Fang X, Cai Z, Wang H, et al. Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circ Res.
2020;127(4):486-501. DOI:10.1161/CIRCRESAHA.120.316509
7. Hagström H, Nasr P, Bottai M, et al. Elevated serum ferritin is associated with increased mortality in non-alcoholic fatty liver disease after 16 years of follow-up. Liver Int. 2016;36(11):1688-95. DOI:10.1111/liv.13144
8. Ellervik C, Marott JL, Tybjærg-Hansen A, et al. Total and cause-specific mortality by moderately and markedly increased ferritin concentrations: general population study and metaanalysis. Clin Chem. 2014;60(11):1419-28. DOI:10.1373/clinchem.2014.229013
9. Леонов С.В., Марусич Е.И., Громова О.А., и др. Антивозрастной эффект гидролизата плаценты человека. Доказательный стандарт. Терапия. 2017;4(14):130-8 [Leonov SV, Marusich YeI, Gromova OA, et al. Anti-aging effect of human placenta hydrolysate. Evidence-based standard. Therapy. 2017;4(14):130-8 (in Russian)].
10. Торшин И.Ю., Громова О.А., Тихонова О.В., Чучалин А.Г. О молекулярных механизмах воздействия пептидов стандартизированного гидролизата плаценты на функционирование митохондрий. Терапевтический архив. 2023;95(12):1133-40 [Torshin IY, Gromova OA, Tikhonova OV, Chuchalin AG. Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(12):1133-40 (in Russian)]. DOI:10.26442/00403660.2023.12.202494
11. Торшин И.Ю., Громова О.А., Чучалин А.Г. Профилактика и лечение COVID-19 с позиций постгеномного фармакологического анализа. Систематический компьютерный анализ 290 000 научных статей по COVID-19. Терапевтический архив. 2024;96(3):205-11 [Torshin IY, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian)]. DOI:10.26442/00403660.2024.03.202635
12. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. New York: Nova Biomedical Books, 2009.
13. Vashisht AA, Zumbrennen KB, Huang X, et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009;326(5953):718-21. DOI:10.1126/science.1176333
14. D’Angiolella V, Donato V, Vijayakumar S, et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010;466(7302):138-42. DOI:10.1038/nature09140
15. Rachez C, Gamble M, Chang CP, et al. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol. 2000;20(8):2718-26. DOI:10.1128/MCB.20.8.2718-2726.2000
16. Gorla-Bajszczak A, Juge-Aubry C, Pernin A, et al. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR. Mol Cell Endocrinol. 1999;147(1-2):37-47. DOI:10.1016/s0303-7207(98)00217-2
17. Sze SCW, Zhang L, Zhang S, et al. Aberrant Transferrin and Ferritin Upregulation Elicits Iron Accumulation and Oxidative Inflammaging Causing Ferroptosis and Undermines Estradiol Biosynthesis in Aging Rat Ovaries by Upregulating NF-Κb-Activated Inducible Nitric Oxide Synthase: First Demonstration of an Intricate Mechanism. Int J Mol Sci. 2022;23(20). DOI:10.3390/ijms232012689
18. Ott C, König J, Höhn A, et al. Reduced autophagy leads to an impaired ferritin turnover in senescent fibroblasts. Free Radic Biol Med. 2016;101:325-33. DOI:10.1016/j.freeradbiomed.2016.10.492
19. Kurz T, Gustafsson B, Brunk UT. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med.
2011;50(11):1647-58. DOI:10.1016/j.freeradbiomed.2011.03.014
20. Oda K, Kikuchi E, Kuroda E, et al. Uric acid, ferritin and γ-glutamyltransferase can be informative in prediction of the oxidative stress. J Clin Biochem Nutr. 2019;64(2):124-8. DOI:10.3164/jcbn.18-23
21. Zhang J, Stanton DM, Nguyen XV, et al. Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience. 2005;135(3):829-38. DOI:10.1016/j.neuroscience.2005.06.049
22. Галкин К.А. Новые тренды в исследованиях возраста и старения в постпандемийный период (обзор исследований). Успехи геронтологии. 2023;36(3):284-91 [Galkin KA. New trends in age and aging research in the post-pandemic period (research overview). Advances in Gerontology. 2023;36(3):284-91 (in Russian)]. DOI:10.34922/AE.2023.36.3.001
23. Rasyid H, Sangkereng A, Harjianti T, Soetjipto AS. Impact of age to ferritin and neutrophil-lymphocyte ratio as biomarkers for intensive care requirement and mortality risk in COVID-19 patients in Makassar, Indonesia. Physiol Rep. 2021;9(10):e14876. DOI:10.14814/phy2.14876
24. Максимов В.А., Торшин И.Ю., Чучалин А.Г., и др. Эффективность и безопасность полипептидного препарата (Лаеннек) в терапии COVID-19. Экспериментальная и клиническая гастроэнтерология. 2020;(6):55-63 [Maksimov VA, Torshin IYu, Chuchalin AG, et al. The effectiveness and safety of a polypeptide drug (Laennec) for the treatment of COVID-19. Experimental and Clinical Gastroenterology. 2020;(6):55-63 (in Russian)]. DOI:10.31146/1682-8658-ecg-178-6-55-63
25. Торшин И.Ю., Громова О.А., Диброва Е.А., и др. Пептиды в составе препарата Лаеннек, потенцирующие его антивирусные эффекты. Российский аллергологический журнал. 2018;1:82-90 [Torshin IYu, Gromova OA, Dibrova EA, et al. Peptides in the composition of Laennec that show antiviral effects in the therapy of atopic dermatitis and herpes infection. Russian Journal of Allergy. 2018;1:82-90 (in Russian)].
26. Ueno Y, Fujita K, Takashina N, et al. Studies on the change in the levels of serum ferritin, serum iron and total iron binding capacity caused by aging and sex difference. Rinsho Byori. 1991;39(5):523-30 (in Japanese)].
27. Yamashita N, Oba K, Nakano H, Metori S. Age-related changes in concentrations of ferritin, glyeosylated ferritin, and non-glycosylated ferritin. Nihon Ronen Igakkai Zasshi. 1996;33(10):754-60 (in Japanese)]. DOI:10.3143/geriatrics.33.754
28. Kadoglou NPE, Biddulph JP, Rafnsson SB, et al. The association of ferritin with cardiovascular and all-cause mortality in community-dwellers: The English longitudinal study of ageing. PLoS One. 2017;12(6):e0178994. DOI:10.1371/journal.pone.0178994
29. Touitou Y, Proust J, Carayon A, et al. Plasma ferritin in old age. Influence of biological and pathological factors in a large elderly population. Clin Chim Acta. 1985;149(1):37-45. DOI:10.1016/0009-8981(85)90271-2
30. Carrivick S, Alfonso H, Golledge J, et al. Differential associations of ferritin and 25-hydroxyvitamin D with fasting glucose and diabetes risk in community dwelling older men. Diabetes Metab Res Rev. 2019;35(7):e3172. DOI:10.1002/dmrr.3172
31. Han LL, Wang YX, Li J, et al. Gender differences in associations of serum ferritin and diabetes, metabolic syndrome, and obesity in the China Health and Nutrition Survey. Mol Nutr Food Res. 2014;58(11):2189-95. DOI:10.1002/mnfr.201400088
32. Li W, Xu LH, Yuan XM. Macrophage hemoglobin scavenger receptor and ferritin accumulation in human atherosclerotic lesions. Ann N Y Acad Sci.
2004;1030:196-201. DOI:10.1196/annals.1329.025
33. van Jaarsveld H, Pool GF, Barnard HC. Influence of ferritin levels on LDL cholesterol concentration in women. Res Commun Mol Pathol Pharmacol. 1997;98(2):201-8.
34. Olesnevich ME, Fanelli Kuczmarski M, Mason M, et al. Serum ferritin levels associated with increased risk for developing CHD in a low-income urban population. Public Health Nutr. 2012;15(7):1291-8. DOI:10.1017/S1368980011003284
35. Rosell-Díaz M, Santos-González E, Motger-Albertí A, et al. Lower serum ferritin levels are associated with worse cognitive performance in aging. J Nutr Health Aging. 2024;28(4):100190. DOI:10.1016/j.jnha.2024.100190
36. Aboelsaad IAF, Claggett BL, Arthur V, et al. Plasma Ferritin Levels, Incident Heart Failure, and Cardiac Structure and Function: The ARIC Study. JACC Heart Fail. 2024;12(3):539-48. DOI:10.1016/j.jchf.2023.11.009
37. Rosell-Díaz M, Santos-González E, Motger-Albertí A, et al. Gut microbiota links to serum ferritin and cognition. Gut Microbes. 2023;15(2):2290318. DOI:10.1080/19490976.2023.2290318
38. Yi W, Zhang J, Huang Y, et al. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells. Leukemia. 2024;38(5):1003-18. DOI:10.1038/s41375-024-02169-y
39. Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging. Invest Ophthalmol Vis Sci. 2011;52(3):1261-74. DOI:10.1167/iovs.10-5705
40. Hara Y, Yanatori I, Tanaka A, et al. Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep. 2020;21(11):e50202. DOI:10.15252/embr.202050202
41. Wang P, Cui Y, Ren Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 2021;12(5):447.
DOI:10.1038/s41419-021-03725-5
42. Babaei M, Shafiei S, Bijani A, et al. Ability of serum ferritin to diagnose iron deficiency anemia in an elderly cohort. Rev Bras Hematol Hemoter.
2017;39(3):223-8. DOI:10.1016/j.bjhh.2017.02.002
43. Munro H. The ferritin genes: their response to iron status. Nutr Rev. 1993;51(3):65-73. DOI:10.1111/j.1753-4887.1993.tb03072.x
44. Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol. 2008;43(12):854-60. DOI:10.1097/RLI.0b013e3181862413
45. Smith AG, Carthew P, Francis JE, et al. Characterization and accumulation of ferritin in hepatocyte nuclei of mice with iron overload. Hepatology.
1990;12(6):1399-405. DOI:10.1002/hep.1840120622
46. Rikans LE, Ardinska V, Hornbrook KR. Age-associated increase in ferritin content of male rat liver: implication for diquat-mediated oxidative injury. Arch Biochem Biophys. 1997;344(1):85-93. DOI:10.1006/abbi.1997.0172
47. Торшин И.Ю., Громова О.А., Богачева Т.Е. Систематический анализ взаимосвязей между неалкогольной жировой болезнью печени и перегрузкой тканей железом: перспективные направления применения полипептидной терапии. Экспериментальная и клиническая гастроэнтерология. 2023;(10):139-52 [Torshin IYu, Gromova OA, Bogacheva TE. Systematic analysis of the relationship between non-alcoholic fatty liver disease and tissue iron overload: promising areas for the use of polypeptide therapy. Experimental and Clinical Gastroenterology. 2023;(10):139-52 (in Russian)]. DOI:10.31146/1682-8658-ecg-218-10-139-152
48. Громова О.А., Торшин И.Ю., Максимов В.А., и др. Пептиды в составе препарата Лаеннек®, способствующие устранению гиперферритинемии и перегрузки железом. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(4):413-25 [Gromova OA, Torshin IYu, Maksimov VA, et al. Peptides contained in the composition of Laennec that contribute to the treatment of hyperferritinemia and iron overload disorders. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(4):413-25 (in Russian)]. DOI:10.17749/2070-4909/farmakoekonomika.2020.070
49. Назаренко О.А., Громова О.А., Демидов В.И., и др. Сравнительная оценка хронической перегрузки железом при применении препаратов железа в субтоксических дозах. Фарматека. 2016;18:40-4 [Nazarenko OA, Gromova OA, Demidov VI, et al. Сomparative assessment of chronic iron overload using iron supplements at the sub-toxic doses. Pharmateca. 2016;18:40-4 (in Russian)].
50. Торшин И.Ю., Громова О.А., Тихонова О.В., Згода В.Г. Гепатопротекторные пептиды препарата Лаеннек. Экспериментальная и клиническая гастроэнтерология.
2022;(7):21-30 [Torshin IYu, Gromova OA, Tikhonova OV, Zgoda VG. Hepatoprotective peptides of the drug Laennec. Experimental and Clinical Gastroenterology. 2022;(7):21-30 (in Russian)]. DOI:10.31146/1682-8658-ecg-203-7-21-30
51. Громова О.А., Торшин И.Ю., Громов А.Н., Тихонова О.В. Нефропротекторные пептиды препарата Лаеннек® в контексте фармакотерапии нефрогепатометаболических нарушений. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(4):570-86 [Gromova OA, Torshin IYu, Gromov AN, Tikhonova OV. Nephroprotective peptides of Laennec® in the context of pharmacotherapy for nephro-hepato-metabolic disorders. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(4):570-86 (in Russian)]. DOI:10.17749/2070-4909/farmakoekonomika.2023.215
52. Benkovic SA, Connor JR. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol. 1993;338(1):97-113. DOI:10.1002/cne.903380108
53. Roskams AJ, Connor JR. Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem. 1994;63(2):709-16. DOI:10.1046/j.1471-4159.1994.63020709.x
54. Connor JR, Menzies SL, St Martin SM, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res. 1990;27(4):595-611. DOI:10.1002/jnr.490270421
55. Zecca L, Gallorini M, Schünemann V, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem. 2001;76(6):1766-73. DOI:10.1046/j.1471-4159.2001.00186.x
56. Bartzokis G, Tishler TA, Lu PH, et al. Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging. 2007;28(3):414-23. DOI:10.1016/j.neurobiolaging.2006.02.005
57. Kuiper MA, Mulder C, van Kamp GJ, et al. Cerebrospinal fluid ferritin levels of patients with Parkinson’s disease, Alzheimer’s disease, and multiple system atrophy. J Neural Transm Park Dis Dement Sect. 1994;7(2):109-14. DOI:10.1007/BF02260965
58. Chen ZT, Pan CZ, Ruan XL, et al. Evaluation of ferritin and TfR level in plasma neural-derived exosomes as potential markers of Parkinson’s disease. Front Aging Neurosci. 2023;15:1216905. DOI:10.3389/fnagi.2023.1216905
59. Raha AA, Biswas A, Henderson J, et al. Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer’s, and Parkinson’s Diseases. Int J Mol Sci. 2022;23(3). DOI:10.3390/ijms23031060
60. Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain. 1991;114(Pt. 4):1953-75. DOI:10.1093/brain/114.4.1953
61. Goodall EF, Haque MS, Morrison KE. Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients. J Neurol. 2008;255(11):1652-6. DOI:10.1007/s00415-008-0945-0
62. Svobodová H, Kosnáč D, Balázsiová Z, et al. Elevated age-related cortical iron, ferritin and amyloid plaques in APP(swe)/PS1(deltaE9) transgenic mouse model of Alzheimer’s disease. Physiol Res. 2019;68(Suppl. 4):S445-51. DOI:10.33549/physiolres.934383
63. Goozee K, Chatterjee P, James I, et al. Elevated plasma ferritin in elderly individuals with high neocortical amyloid-β load. Mol Psychiatry. 2018;23(8):1807-12. DOI:10.1038/mp.2017.146
64. Bester J, Buys AV, Lipinski B, et al. High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer’s disease. Front Aging Neurosci. 2013;5:88. DOI:10.3389/fnagi.2013.00088
65. Lopes KO, Sparks DL, Streit WJ. Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia.
2008;56(10):1048-60. DOI:10.1002/glia.20678
________________________________________________
1. Coradduzza D, Congiargiu A, Chen Z, et al. Ferroptosis and Senescence: A Systematic Review. Int J Mol Sci. 2023;24(4):3658. DOI:10.3390/ijms24043658
2. May M, Barlow D, Ibrahim R, Houseknecht KL. Mechanisms Underlying Antipsychotic-Induced NAFLD and Iron Dysregulation: A Multi-Omic Approach. Biomedicines. 2022;10(6):1225. DOI:10.3390/biomedicines10061225
3. Wang W, Knovich MA, Coffman LG, et al. Serum ferritin: Past, present and future. Biochim Biophys Acta. 2010;1800(8):760-9. DOI:10.1016/j.bbagen.2010.03.011
4. Ruscitti P, Di Benedetto P, Berardicurti O, et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020;10(1):12232. DOI:10.1038/s41598-020-69031-w
5. Kaleda MI, Fedorov ES. Significance of hyperferritinemia as a diagnostic and prognostic biomarker. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2022;16(2):74-80 (in Russian). DOI:10.14412/1996-7012-2022-2-74-80
6. Fang X, Cai Z, Wang H, et al. Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circ Res.
2020;127(4):486-501. DOI:10.1161/CIRCRESAHA.120.316509
7. Hagström H, Nasr P, Bottai M, et al. Elevated serum ferritin is associated with increased mortality in non-alcoholic fatty liver disease after 16 years of follow-up. Liver Int. 2016;36(11):1688-95. DOI:10.1111/liv.13144
8. Ellervik C, Marott JL, Tybjærg-Hansen A, et al. Total and cause-specific mortality by moderately and markedly increased ferritin concentrations: general population study and metaanalysis. Clin Chem. 2014;60(11):1419-28. DOI:10.1373/clinchem.2014.229013
9. Leonov SV, Marusich YeI, Gromova OA, et al. Anti-aging effect of human placenta hydrolysate. Evidence-based standard. Therapy. 2017;4(14):130-8 (in Russian)]
10. Torshin IY, Gromova OA, Tikhonova OV, Chuchalin AG. Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(12):1133-40 (in Russian). DOI:10.26442/00403660.2023.12.202494
11. Torshin IY, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian). DOI:10.26442/00403660.2024.03.202635
12. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. New York: Nova Biomedical Books, 2009.
13. Vashisht AA, Zumbrennen KB, Huang X, et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009;326(5953):718-21. DOI:10.1126/science.1176333
14. D’Angiolella V, Donato V, Vijayakumar S, et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010;466(7302):138-42. DOI:10.1038/nature09140
15. Rachez C, Gamble M, Chang CP, et al. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol. 2000;20(8):2718-26. DOI:10.1128/MCB.20.8.2718-2726.2000
16. Gorla-Bajszczak A, Juge-Aubry C, Pernin A, et al. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR. Mol Cell Endocrinol. 1999;147(1-2):37-47. DOI:10.1016/s0303-7207(98)00217-2
17. Sze SCW, Zhang L, Zhang S, et al. Aberrant Transferrin and Ferritin Upregulation Elicits Iron Accumulation and Oxidative Inflammaging Causing Ferroptosis and Undermines Estradiol Biosynthesis in Aging Rat Ovaries by Upregulating NF-Κb-Activated Inducible Nitric Oxide Synthase: First Demonstration of an Intricate Mechanism. Int J Mol Sci. 2022;23(20). DOI:10.3390/ijms232012689
18. Ott C, König J, Höhn A, et al. Reduced autophagy leads to an impaired ferritin turnover in senescent fibroblasts. Free Radic Biol Med. 2016;101:325-33. DOI:10.1016/j.freeradbiomed.2016.10.492
19. Kurz T, Gustafsson B, Brunk UT. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med.
2011;50(11):1647-58. DOI:10.1016/j.freeradbiomed.2011.03.014
20. Oda K, Kikuchi E, Kuroda E, et al. Uric acid, ferritin and γ-glutamyltransferase can be informative in prediction of the oxidative stress. J Clin Biochem Nutr. 2019;64(2):124-8. DOI:10.3164/jcbn.18-23
21. Zhang J, Stanton DM, Nguyen XV, et al. Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience. 2005;135(3):829-38. DOI:10.1016/j.neuroscience.2005.06.049
22. Galkin KA. New trends in age and aging research in the post-pandemic period (research overview). Advances in Gerontology. 2023;36(3):284-91 (in Russian). DOI:10.34922/AE.2023.36.3.001
23. Rasyid H, Sangkereng A, Harjianti T, Soetjipto AS. Impact of age to ferritin and neutrophil-lymphocyte ratio as biomarkers for intensive care requirement and mortality risk in COVID-19 patients in Makassar, Indonesia. Physiol Rep. 2021;9(10):e14876. DOI:10.14814/phy2.14876
24. Maksimov VA, Torshin IYu, Chuchalin AG, et al. The effectiveness and safety of a polypeptide drug (Laennec) for the treatment of COVID-19. Experimental and Clinical Gastroenterology. 2020;(6):55-63 (in Russian). DOI:10.31146/1682-8658-ecg-178-6-55-63
25. Torshin IYu, Gromova OA, Dibrova EA, et al. Peptides in the composition of Laennec that show antiviral effects in the therapy of atopic dermatitis and herpes infection. Russian Journal of Allergy. 2018;1:82-90 (in Russian).
26. Ueno Y, Fujita K, Takashina N, et al. Studies on the change in the levels of serum ferritin, serum iron and total iron binding capacity caused by aging and sex difference. Rinsho Byori. 1991;39(5):523-30 (in Japanese)].
27. Yamashita N, Oba K, Nakano H, Metori S. Age-related changes in concentrations of ferritin, glyeosylated ferritin, and non-glycosylated ferritin. Nihon Ronen Igakkai Zasshi. 1996;33(10):754-60 (in Japanese)]. DOI:10.3143/geriatrics.33.754
28. Kadoglou NPE, Biddulph JP, Rafnsson SB, et al. The association of ferritin with cardiovascular and all-cause mortality in community-dwellers: The English longitudinal study of ageing. PLoS One. 2017;12(6):e0178994. DOI:10.1371/journal.pone.0178994
29. Touitou Y, Proust J, Carayon A, et al. Plasma ferritin in old age. Influence of biological and pathological factors in a large elderly population. Clin Chim Acta. 1985;149(1):37-45. DOI:10.1016/0009-8981(85)90271-2
30. Carrivick S, Alfonso H, Golledge J, et al. Differential associations of ferritin and 25-hydroxyvitamin D with fasting glucose and diabetes risk in community dwelling older men. Diabetes Metab Res Rev. 2019;35(7):e3172. DOI:10.1002/dmrr.3172
31. Han LL, Wang YX, Li J, et al. Gender differences in associations of serum ferritin and diabetes, metabolic syndrome, and obesity in the China Health and Nutrition Survey. Mol Nutr Food Res. 2014;58(11):2189-95. DOI:10.1002/mnfr.201400088
32. Li W, Xu LH, Yuan XM. Macrophage hemoglobin scavenger receptor and ferritin accumulation in human atherosclerotic lesions. Ann N Y Acad Sci.
2004;1030:196-201. DOI:10.1196/annals.1329.025
33. van Jaarsveld H, Pool GF, Barnard HC. Influence of ferritin levels on LDL cholesterol concentration in women. Res Commun Mol Pathol Pharmacol. 1997;98(2):201-8.
34. Olesnevich ME, Fanelli Kuczmarski M, Mason M, et al. Serum ferritin levels associated with increased risk for developing CHD in a low-income urban population. Public Health Nutr. 2012;15(7):1291-8. DOI:10.1017/S1368980011003284
35. Rosell-Díaz M, Santos-González E, Motger-Albertí A, et al. Lower serum ferritin levels are associated with worse cognitive performance in aging. J Nutr Health Aging. 2024;28(4):100190. DOI:10.1016/j.jnha.2024.100190
36. Aboelsaad IAF, Claggett BL, Arthur V, et al. Plasma Ferritin Levels, Incident Heart Failure, and Cardiac Structure and Function: The ARIC Study. JACC Heart Fail. 2024;12(3):539-48. DOI:10.1016/j.jchf.2023.11.009
37. Rosell-Díaz M, Santos-González E, Motger-Albertí A, et al. Gut microbiota links to serum ferritin and cognition. Gut Microbes. 2023;15(2):2290318. DOI:10.1080/19490976.2023.2290318
38. Yi W, Zhang J, Huang Y, et al. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells. Leukemia. 2024;38(5):1003-18. DOI:10.1038/s41375-024-02169-y
39. Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging. Invest Ophthalmol Vis Sci. 2011;52(3):1261-74. DOI:10.1167/iovs.10-5705
40. Hara Y, Yanatori I, Tanaka A, et al. Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep. 2020;21(11):e50202. DOI:10.15252/embr.202050202
41. Wang P, Cui Y, Ren Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 2021;12(5):447.
DOI:10.1038/s41419-021-03725-5
42. Babaei M, Shafiei S, Bijani A, et al. Ability of serum ferritin to diagnose iron deficiency anemia in an elderly cohort. Rev Bras Hematol Hemoter.
2017;39(3):223-8. DOI:10.1016/j.bjhh.2017.02.002
43. Munro H. The ferritin genes: their response to iron status. Nutr Rev. 1993;51(3):65-73. DOI:10.1111/j.1753-4887.1993.tb03072.x
44. Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol. 2008;43(12):854-60. DOI:10.1097/RLI.0b013e3181862413
45. Smith AG, Carthew P, Francis JE, et al. Characterization and accumulation of ferritin in hepatocyte nuclei of mice with iron overload. Hepatology.
1990;12(6):1399-405. DOI:10.1002/hep.1840120622
46. Rikans LE, Ardinska V, Hornbrook KR. Age-associated increase in ferritin content of male rat liver: implication for diquat-mediated oxidative injury. Arch Biochem Biophys. 1997;344(1):85-93. DOI:10.1006/abbi.1997.0172
47. Torshin IYu, Gromova OA, Bogacheva TE. Systematic analysis of the relationship between non-alcoholic fatty liver disease and tissue iron overload: promising areas for the use of polypeptide therapy. Experimental and Clinical Gastroenterology. 2023;(10):139-52 (in Russian). DOI:10.31146/1682-8658-ecg-218-10-139-152
48. Gromova OA, Torshin IYu, Maksimov VA, et al. Peptides contained in the composition of Laennec that contribute to the treatment of hyperferritinemia and iron overload disorders. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(4):413-25 (in Russian). DOI:10.17749/2070-4909/farmakoekonomika.2020.070
49. Nazarenko OA, Gromova OA, Demidov VI, et al. Сomparative assessment of chronic iron overload using iron supplements at the sub-toxic doses. Pharmateca. 2016;18:40-4 (in Russian).
50. Torshin IYu, Gromova OA, Tikhonova OV, Zgoda VG. Hepatoprotective peptides of the drug Laennec. Experimental and Clinical Gastroenterology. 2022;(7):21-30 (in Russian). DOI:10.31146/1682-8658-ecg-203-7-21-30
51. Gromova OA, Torshin IYu, Gromov AN, Tikhonova OV. Nephroprotective peptides of Laennec® in the context of pharmacotherapy for nephro-hepato-metabolic disorders. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(4):570-86 (in Russian). DOI:10.17749/2070-4909/farmakoekonomika.2023.215
52. Benkovic SA, Connor JR. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol. 1993;338(1):97-113. DOI:10.1002/cne.903380108
53. Roskams AJ, Connor JR. Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem. 1994;63(2):709-16. DOI:10.1046/j.1471-4159.1994.63020709.x
54. Connor JR, Menzies SL, St Martin SM, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res. 1990;27(4):595-611. DOI:10.1002/jnr.490270421
55. Zecca L, Gallorini M, Schünemann V, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem. 2001;76(6):1766-73. DOI:10.1046/j.1471-4159.2001.00186.x
56. Bartzokis G, Tishler TA, Lu PH, et al. Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging. 2007;28(3):414-23. DOI:10.1016/j.neurobiolaging.2006.02.005
57. Kuiper MA, Mulder C, van Kamp GJ, et al. Cerebrospinal fluid ferritin levels of patients with Parkinson’s disease, Alzheimer’s disease, and multiple system atrophy. J Neural Transm Park Dis Dement Sect. 1994;7(2):109-14. DOI:10.1007/BF02260965
58. Chen ZT, Pan CZ, Ruan XL, et al. Evaluation of ferritin and TfR level in plasma neural-derived exosomes as potential markers of Parkinson’s disease. Front Aging Neurosci. 2023;15:1216905. DOI:10.3389/fnagi.2023.1216905
59. Raha AA, Biswas A, Henderson J, et al. Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer’s, and Parkinson’s Diseases. Int J Mol Sci. 2022;23(3). DOI:10.3390/ijms23031060
60. Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain. 1991;114(Pt. 4):1953-75. DOI:10.1093/brain/114.4.1953
61. Goodall EF, Haque MS, Morrison KE. Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients. J Neurol. 2008;255(11):1652-6. DOI:10.1007/s00415-008-0945-0
62. Svobodová H, Kosnáč D, Balázsiová Z, et al. Elevated age-related cortical iron, ferritin and amyloid plaques in APP(swe)/PS1(deltaE9) transgenic mouse model of Alzheimer’s disease. Physiol Res. 2019;68(Suppl. 4):S445-51. DOI:10.33549/physiolres.934383
63. Goozee K, Chatterjee P, James I, et al. Elevated plasma ferritin in elderly individuals with high neocortical amyloid-β load. Mol Psychiatry. 2018;23(8):1807-12. DOI:10.1038/mp.2017.146
64. Bester J, Buys AV, Lipinski B, et al. High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer’s disease. Front Aging Neurosci. 2013;5:88. DOI:10.3389/fnagi.2013.00088
65. Lopes KO, Sparks DL, Streit WJ. Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia.
2008;56(10):1048-60. DOI:10.1002/glia.20678
1Федеральный исследовательский центр «Информатика и управление» РАН, Москва, Россия;
2ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
*unesco.gromova@gmail.com
________________________________________________
Olga A. Gromova*1, Ivan Iu. Torshin1, Alexander G. Chuchalin2
1Federal Research Center “Informatics and Control”, Moscow, Russia;
2Pirogov Russian National Research Medical University, Moscow, Russia
*unesco.gromova@gmail.com