Дилатационная кардиомиопатия (ДКМП) является основной причиной сердечной недостаточности, внезапной сердечной смерти и трансплантации сердца у пациентов молодого возраста. Причины возникновения ДКМП разнообразны и включают в себя как генетические, так и метаболические, инфекционные, токсические и другие факторы. В настоящее время известно, что герминальные мутации более чем в 98 генах могут быть ассоциированы с возникновением ДКМП. Однако пенетрантность данных генов зачастую зависит от совокупности факторов, в том числе и от модифицируемых, т.е. от тех, которые меняются под воздействием окружающей среды. Около 20–25% генетически обусловленных форм ДКМП приходится на мутации в гене титина (TTN). Несмотря на то что TTN является крупнейшим белком в организме человека, его роль в физиологии сердца и заболеваниях еще полностью не изучена. Вместе с тем изменения в гене TTN могут в дальнейшем стать потенциальными терапевтическими мишенями для лечения генетических и приобретенных кардиомиопатий. Соответственно, анализ клинических случаев развития кардиомиопатий у пациентов с выявленными мутациями в гене TTN представляет большой научный интерес. В статье представлен клинический случай развития ДКМП у пациента с выявленным патогенным вариантом мутации в гене TTN и обратного ремоделирования левого желудочка на фоне оптимальной терапии сердечной недостаточности при последующем амбулаторном наблюдении.
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, sudden cardiac death, and heart transplantation in young patients. The causes of DCM are varied and include genetic factors and metabolic, infectious, toxic and others factors. Today it is known that germline mutations in more than 98 genes can be associated with the occurrence of DCM. However, the penetrance of these genes often depends on a combination of factors, including modifiable ones, i.e. those that change under the influence of the environment. About 20–25% of genetically determined forms of DCM are due to mutations in the titin gene (TTN). Titin is the largest protein in the body, which is an important component of the sarcomer. Although titin is the largest protein in the human body, its role in the physiology of heart and disease is not yet fully understood. However, a mutation in the TTN gene may later represent a potential therapeutic target for genetic and acquired cardiomyopathy. Thus, the analysis of clinical cases of cardiomyopathy in patients with identified mutations in the TTN gene is of great scientific interest. The article presents a clinical case of manifestation of DCM in patient with a revealed pathogenic variant of mutation in the gene TTN and reverse left ventricular remodeling of the against the background of optimal therapy of heart failure in a subsequent outpatient observation.
1. Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850-8. DOI:10.1093/eurheartj/ehv727
2. Haas J, Frese KS, Peil B, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36(18):1123-35a. DOI:10.1093/eurheartj/ehu301
3. McNally EM, Mestroni L. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms. Circ Res. 2017;121(7):731-48. DOI:10.1161/CIRCRESAHA.116.309396
4. Ware JS, Amor-Salamanca A, Tayal U, et al. Genetic Etiology for Alcohol-Induced Cardiac Toxicity. J Am Coll Cardiol. 2018;71(20):2293-302. DOI:10.1016/j.jacc.2018.03.462
5. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic Variants Associated with Cancer Therapy-Induced Cardiomyopathy. Circulation. 2019;140(1):31-41. DOI:10.1161/CIRCULATIONAHA.118.037934
6. Ware JS, Li J, Mazaika E, et al. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N Engl J Med. 2016;374(3):233-41. DOI:10.1056/NEJMoa1505517
7. LeWinter MM, Granzier HL. Titin is a major human disease gene. Circulation. 2013;127(8):938-44. DOI:10.1161/CIRCULATIONAHA.112.139717
8. Shyr C, Tarailo-Graovac M, Gottlieb M. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;64. DOI:10.1186/s12920-014-0064-y
9. Golbus JR, Puckelwartz MJ, Fahrenbach JP, et al. Population-based variation in cardiomyopathy genes. Circ Cardiovasc Genet. 2012;5(4):391-9. DOI:10.1161/CIRCGENETICS.112.962928
10. Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619-28. DOI:10.1056/NEJMoa1110186
11. Roberts AM, Ware JS, Herman DS, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra6. DOI:10.1126/scitranslmed.3010134
12. Shyr C, Tarailo-Graovac M, Gottlieb M, et al. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;7:64. DOI:10.1186/s12920-014-0064-y
13. Clinical Genome Resource. Cardiovascular CDWG – ClinGen. Available at: https://clinicalgenome.org/working-groups/clinical-domain/cardiovascular. Accessed: 12.11.2023.
14. Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591-4. DOI:10.1038/s41592-018-0051-x
15. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. DOI:10.1038/gim.2015.30
16. LeWinter MM, Wu Y, Labeit S, Granzier H. Cardiac titin: structure, functions and role in disease. Clin Chim Acta. 2007;375(1-2):1-9. DOI:10.1016/j.cca.2006.06.035
17. Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol. 2018;15(4):241-52. DOI:10.1038/nrcardio.2017.190
18. Tharp CA, Haywood ME, Sbaizero O, et al. The Giant Protein Titin’s Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Front Physiol. 2019;10:1436. DOI:10.3389/fphys.2019.01436
19. Tobita T, Nomura S, Fujita T, et al. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci Rep. 2018;8(1):1998. DOI:10.1038/s41598-018-20114-9
20. Verdonschot JAJ, Hazebroek MR, Wang P, et al. Clinical Phenotype and Genotype Associations with Improvement in Left Ventricular Function in Dilated Cardiomyopathy. Circ Heart Fail. 2018;11(11):e005220. DOI:10.1161/CIRCHEARTFAILURE.118.005220
21. Vissing CR, Rasmussen TB, Dybro AM, et al. Dilated cardiomyopathy caused by truncating titin variants: long-term outcomes, arrhythmias, response to treatment and sex differences. J Med Genet. 2021;58(12):832-41. DOI:10.1136/jmedgenet-2020-107178
22. Akhtar MM, Lorenzini M, Cicerchia M, et al. Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the TTN Gene. Circ Heart Fail. 2020;13(10):e006832. DOI:10.1161/CIRCHEARTFAILURE.119.006832
23. Jansweijer JA, Nieuwhof K, Russo F, et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail. 2017;19(4):512-21. DOI:10.1002/ejhf.673
24. Escobar-Lopez L, Ochoa JP, Mirelis JG, et al. Association of Genetic Variants with Outcomes in Patients with Nonischemic Dilated Cardiomyopathy. J Am Coll Cardiol. 2021;78(17):1682-99. DOI:10.1016/j.jacc.2021.08.039
25. Tayal U, Newsome S, Buchan R, et al. Phenotype and Clinical Outcomes of Titin Cardiomyopathy. J Am Coll Cardiol. 2017;70(18):2264-74. DOI:10.1016/j.jacc.2017.08.063
26. Køber L, Thune JJ, Nielsen JC, et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med. 2016;375(13):1221-30. DOI:10.1056/NEJMoa1608029
27. Gigli M, Merlo M, Graw SL, et al. Genetic Risk of Arrhythmic Phenotypes in Patients with Dilated Cardiomyopathy. J Am Coll Cardiol. 2019;74(11):1480-90. DOI:10.1016/j.jacc.2019.06.072
28. Corden B, Jarman J, Whiffin N, et al. Association of Titin-Truncating Genetic Variants with Life-threatening Cardiac Arrhythmias in Patients with Dilated Cardiomyopathy and Implanted Defibrillators. JAMA Netw Open. 2019;2(6):e196520. DOI:10.1001/jamanetworkopen.2019.6520
29. Ahlberg G, Refsgaard L, Lundegaard PR, et al. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun. 2018;9(1):4316. DOI:10.1038/s41467-018-06618-y
30. Choi SH, Weng LC, Roselli C, et al. Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. JAMA. 2018;320(22):2354-64. DOI:10.1001/jama.2018.18179
31. Körtl T, Schach C, Sossalla S. How arrhythmias weaken the ventricle: an often underestimated vicious cycle. Herz. 2023;48(2):115-22. DOI:10.1007/s00059-022-05158-y
32. Huttner IG, Wang LW, Santiago CF, et al. A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. Circ Genom Precis Med. 2018;11(8):e002135. DOI:10.1161/CIRCGEN.118.002135
33. Pedretti S, Vargiu S, Baroni M, et al. Complexity of scar and ventricular arrhythmias in dilated cardiomyopathy of any etiology: Long-term data from the SCARFEAR (Cardiovascular Magnetic Resonance Predictors of Appropriate Implantable Cardioverter-Defibrillator Therapy Delivery) Registry. Clin Cardiol. 2018;41(4):494-501. DOI:10.1002/clc.22911
34. Verdonschot JAJ, Hazebroek MR, Derks KWJ, et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur Heart J. 2018;39(10):864-73. DOI:10.1093/eurheartj/ehx808
35. Timmis A, Vardas P, Townsend N, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43(8):716-99. DOI:10.1093/eurheartj/ehab892
________________________________________________
1. Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850-8. DOI:10.1093/eurheartj/ehv727
2. Haas J, Frese KS, Peil B, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36(18):1123-35a. DOI:10.1093/eurheartj/ehu301
3. McNally EM, Mestroni L. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms. Circ Res. 2017;121(7):731-48. DOI:10.1161/CIRCRESAHA.116.309396
4. Ware JS, Amor-Salamanca A, Tayal U, et al. Genetic Etiology for Alcohol-Induced Cardiac Toxicity. J Am Coll Cardiol. 2018;71(20):2293-302. DOI:10.1016/j.jacc.2018.03.462
5. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic Variants Associated with Cancer Therapy-Induced Cardiomyopathy. Circulation. 2019;140(1):31-41. DOI:10.1161/CIRCULATIONAHA.118.037934
6. Ware JS, Li J, Mazaika E, et al. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N Engl J Med. 2016;374(3):233-41. DOI:10.1056/NEJMoa1505517
7. LeWinter MM, Granzier HL. Titin is a major human disease gene. Circulation. 2013;127(8):938-44. DOI:10.1161/CIRCULATIONAHA.112.139717
8. Shyr C, Tarailo-Graovac M, Gottlieb M. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;64. DOI:10.1186/s12920-014-0064-y
9. Golbus JR, Puckelwartz MJ, Fahrenbach JP, et al. Population-based variation in cardiomyopathy genes. Circ Cardiovasc Genet. 2012;5(4):391-9. DOI:10.1161/CIRCGENETICS.112.962928
10. Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619-28. DOI:10.1056/NEJMoa1110186
11. Roberts AM, Ware JS, Herman DS, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra6. DOI:10.1126/scitranslmed.3010134
12. Shyr C, Tarailo-Graovac M, Gottlieb M, et al. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;7:64. DOI:10.1186/s12920-014-0064-y
13. Clinical Genome Resource. Cardiovascular CDWG – ClinGen. Available at: https://clinicalgenome.org/working-groups/clinical-domain/cardiovascular. Accessed: 12.11.2023.
14. Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591-4. DOI:10.1038/s41592-018-0051-x
15. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. DOI:10.1038/gim.2015.30
16. LeWinter MM, Wu Y, Labeit S, Granzier H. Cardiac titin: structure, functions and role in disease. Clin Chim Acta. 2007;375(1-2):1-9. DOI:10.1016/j.cca.2006.06.035
17. Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol. 2018;15(4):241-52. DOI:10.1038/nrcardio.2017.190
18. Tharp CA, Haywood ME, Sbaizero O, et al. The Giant Protein Titin’s Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Front Physiol. 2019;10:1436. DOI:10.3389/fphys.2019.01436
19. Tobita T, Nomura S, Fujita T, et al. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci Rep. 2018;8(1):1998. DOI:10.1038/s41598-018-20114-9
20. Verdonschot JAJ, Hazebroek MR, Wang P, et al. Clinical Phenotype and Genotype Associations with Improvement in Left Ventricular Function in Dilated Cardiomyopathy. Circ Heart Fail. 2018;11(11):e005220. DOI:10.1161/CIRCHEARTFAILURE.118.005220
21. Vissing CR, Rasmussen TB, Dybro AM, et al. Dilated cardiomyopathy caused by truncating titin variants: long-term outcomes, arrhythmias, response to treatment and sex differences. J Med Genet. 2021;58(12):832-41. DOI:10.1136/jmedgenet-2020-107178
22. Akhtar MM, Lorenzini M, Cicerchia M, et al. Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the TTN Gene. Circ Heart Fail. 2020;13(10):e006832. DOI:10.1161/CIRCHEARTFAILURE.119.006832
23. Jansweijer JA, Nieuwhof K, Russo F, et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail. 2017;19(4):512-21. DOI:10.1002/ejhf.673
24. Escobar-Lopez L, Ochoa JP, Mirelis JG, et al. Association of Genetic Variants with Outcomes in Patients with Nonischemic Dilated Cardiomyopathy. J Am Coll Cardiol. 2021;78(17):1682-99. DOI:10.1016/j.jacc.2021.08.039
25. Tayal U, Newsome S, Buchan R, et al. Phenotype and Clinical Outcomes of Titin Cardiomyopathy. J Am Coll Cardiol. 2017;70(18):2264-74. DOI:10.1016/j.jacc.2017.08.063
26. Køber L, Thune JJ, Nielsen JC, et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med. 2016;375(13):1221-30. DOI:10.1056/NEJMoa1608029
27. Gigli M, Merlo M, Graw SL, et al. Genetic Risk of Arrhythmic Phenotypes in Patients with Dilated Cardiomyopathy. J Am Coll Cardiol. 2019;74(11):1480-90. DOI:10.1016/j.jacc.2019.06.072
28. Corden B, Jarman J, Whiffin N, et al. Association of Titin-Truncating Genetic Variants with Life-threatening Cardiac Arrhythmias in Patients with Dilated Cardiomyopathy and Implanted Defibrillators. JAMA Netw Open. 2019;2(6):e196520. DOI:10.1001/jamanetworkopen.2019.6520
29. Ahlberg G, Refsgaard L, Lundegaard PR, et al. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun. 2018;9(1):4316. DOI:10.1038/s41467-018-06618-y
30. Choi SH, Weng LC, Roselli C, et al. Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. JAMA. 2018;320(22):2354-64. DOI:10.1001/jama.2018.18179
31. Körtl T, Schach C, Sossalla S. How arrhythmias weaken the ventricle: an often underestimated vicious cycle. Herz. 2023;48(2):115-22. DOI:10.1007/s00059-022-05158-y
32. Huttner IG, Wang LW, Santiago CF, et al. A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. Circ Genom Precis Med. 2018;11(8):e002135. DOI:10.1161/CIRCGEN.118.002135
33. Pedretti S, Vargiu S, Baroni M, et al. Complexity of scar and ventricular arrhythmias in dilated cardiomyopathy of any etiology: Long-term data from the SCARFEAR (Cardiovascular Magnetic Resonance Predictors of Appropriate Implantable Cardioverter-Defibrillator Therapy Delivery) Registry. Clin Cardiol. 2018;41(4):494-501. DOI:10.1002/clc.22911
34. Verdonschot JAJ, Hazebroek MR, Derks KWJ, et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur Heart J. 2018;39(10):864-73. DOI:10.1093/eurheartj/ehx808
35. Timmis A, Vardas P, Townsend N, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43(8):716-99. DOI:10.1093/eurheartj/ehab892
1ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия; 2ФГБОУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России, Москва, Россия; 3ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» ФМБА России, Москва, Россия
*dr.nasonova@mail.ru
________________________________________________
Svetlana N. Nasonova*1, Aleksei N. Meshkov1,2, Igor V. Zhirov1, Yulia F. Osmolovskaya1, Anastasiia A. Shoshina1, Alan V. Gagloev1, Irina H. Dzhumaniiazova3, Elena A. Zelenova3, Veronika V. Erema3, Mariia S. Gusakova3, Mikhail V. Ivanov3, Mikhail V. Terekhov3, Daria A. Kashtanova3, Alexsandra I. Nekrasova3, Sergey I. Mitrofanov3, Andrey S. Shingaliev3, Vladimir S. Yudin3, Anton A. Keskinov3, Nataliya V. Gomyranova1, Uliana V. Chubykina1, Marat V. Ezhov1, Sergey N. Tereshchenko1, Sergey M. Yudin3, Sergey A. Boytsov1
1Chazov National Medical Research Center of Cardiology, Moscow, Russia; 2National Research Center for Therapy and Preventive Medicine, Moscow, Russia; 3Centre for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia
*dr.nasonova@mail.ru