Рак молочной железы (РМЖ) является самым распространенным онкологическим заболеванием у женщин, занимая в структуре заболеваемости 16%. Химиотерапевтическое лечение наряду с хирургическим и лучевой терапией – один из компонентов, позволяющих значительно снизить смертность больных. Препараты антрациклинового ряда (доксорубицин, эпирубицин) являются одними из наиболее эффективных для лечения РМЖ и входят в большинство стандартных схем химиотерапевтического лечения этого заболевания. Однако их активное клиническое применение ограничено кумулятивным и дозозависимым кардиотоксическим действием. В обзоре представлены основные механизмы развития антрациклиновой кардиотоксичности, способы диагностики, существующие методы лечения. На основании экспериментальных и клинических исследований обсуждаются возможности применения ингибитора f-каналов синусового узла ивабрадина для профилактики и лечения кардиотоксического действия препаратов антрациклинового ряда.
Breast cancer is the most common cancer in females, accounting for 16% in the structure of morbidity. Chemotherapy along with surgery and radiation therapy is one of the components that can considerably reduce mortality rates in patients with breast cancer. Anthracyclines (doxorubicin, epirubicin) are one of the most efficacious drugs used to treat breast cancer and included into most standard chemotherapy regimens for this disease. However, their active clinical use is limited by cumulative and dose-dependent cardiotoxic effects. The review shows the basic mechanisms of anthracycline cardiotoxicity, diagnostic procedures, and existing treatment options. Based on experimental and clinical evidence, the authors discuss whether the sinus node f channel inhibitor ivabradine may be used to prevent and treat the cardiotoxic effect of anthracyclines.
1. Siegel R, Ward E, Brawley O. Cancer statistics, 2011. A Cancer J Clin 2011; 61 (4); 212–36.
2. O’Shaughnessy J, Twelves C, Aapro M. Treatment for anthracycline-pretreated metastatic breast cancer. Oncologist 2002; 7 (Suppl. 6): 4–12.
3. Swain S, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97: 2869–79.
4. Mercuro G, Cadeddu C, Piras A et al. Early epirubicin-induced myocardial dysfunction revealed by serial tissue doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncologist 2007; 12: 1124–33.
5. Jones LW, Haykowsky MJ, Swartz JJ et al. Early breast cancer: therapy and cardiovascular injury. J Am Coll Cardiol 2007; 50: 1435–41.
6. Jones RL, Ewer MS. Cardiac and cardiovascular toxicity of nonanthracycline anticancer drugs. Exp Rev Anticancer Ther 2006; 6: 1249–69.
7. Floyd JD, Nguyen DT, Lobins RL et al. Cardiotoxicity of cancer therapy. J Clin Oncol 2005; 23: 7685–96.
8. Chu TF, Rupnick MA, Kerkela R et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 2007; 370: 2011–9.
9. Vergely C, Delemasure S, Cottin Y, Rochette L. Preventing the cardiotoxic effects of anthracyclines: from basic concepts to clinical data. Heart Metab 2007; 35: 1–7.
10. Singal PK, Iliscovic N, Timao U et al. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 1997; 11 (12): 931–6.
11. Van Dalen EC, Michiels EM, Caron HN, Kremer LC. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev 2006; 4: CD005006.
12. Bovelli D, Plataniotis G, Roila F et al. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann Oncol 2010; 21 (Suppl. 5): 277–82.
13. Albini A, Pennesi G, Donatelli F et al. Cardiotoxicity of Anticancer Drugs: The Need for Cardio-Oncology and Cardio-Oncological Prevention. J Natl Cancer Inst 2010; 102 (1): 14–25.
14. Cardinale D, Sandri MT, Colombo A et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004; 109 (22): 2749–54.
15. Sawaya H, Sebag IA, Plana JC et al. Assessment of Echocardiography and Biomarkers for the Extended Prediction of Cardiotoxicity in Patients treated with Anthracyclines, Taxanes and Trastuzumab Circ Cardiovasc Imaging 2012; 5 (5): 596–603.
16. Von Hoff DD, Layard MW, Basa P et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91: 710–7.
17. Seidman A, Hudis C, Pierri MK et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 2002; 20 (5): 1215–21.
18. Chen J, Long JB, Hurria A et al. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol 2012; 60 (24): 2504–12. Epub 2012 Nov 14.
19. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 2002; 13: 699–709.
20.Von Hoff DD, Layard MW, Basa P et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 1: 710–7.
21. Lenneman AJ, Wang L, Wigger M et al. Heart Transplant Survival Outcomes for Adriamycin-Dilated Cardiomyopathy. Am J Cardiol 2012.
22. Rickard J, Kumbhani DJ, Baranowski B et al. Usefulness of cardiac resynchronization therapy in patients with Adriamycin-induced cardiomyopathy. Am J Cardiol 2010; 105 (4): 522–6.
23. Tallaj JA, Franco V, Rayburn BK et al. Response of Doxorubicin-induced Cardiomyopathy to the Current Management Strategy of Heart Failure. J Heart Lung Transplant 2005; 24: 2196–201.
24. Cardinale D, Colombo A, Lamantia G et al. Anthracycline-Induced Cardiomyopathy: Clinical Relevance and Response to Pharmacologic Therapy. J Am Coll Cardiol 2010; 55 (3): 213–20.
25. Kalay N, Basar E, Ozdogru I et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 2006; 48 (11): 2258–62.
26. Kaya MG, Ozkan M, Gunebakmaz O et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: A randomized control study. Int J Cardiol 2012.
27. Cardinale D, Colombo A, Sandri MT. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 2006; 114 (23): 2474–81.
28. Georgakopoulos P, Roussou P, Matsakas E. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: A prospective, parallelgroup, randomized, controlled study with 36-month follow-up. Am J Hematol 2010; 85 (11).
29. Шальнова С.А., Деев А.Д., Оганов Р.Г. и др. Частота пульса и смертность от сердечно-сосудистых заболеваний у российских мужчин и женщин. Результаты эпидемиологического исследования. Кардиология. 2005; 10: 45–50.
30. Seccareccia F, Pannozzo F, Dima F et al. Heart rate as a predictor of mortality: the MATISS Project. Am J Public Health 2001; 91: 1258–63.
31. Jouven X, Escolano S, Celermajer D et al. Heart Rate and Risk of Cancer Death in Healthy Men. PLoS One 2011; 6 (8): e21310.
32. Brown HF, DiFrancesco D, Noble SJ. How does adrenaline accelerate the heart? Nature 1979; 280: 235–6.
33. Mulder P, Barbier S, Chagraoui A et al. Long-term heart rate reduction induced by the selective If current inhibitor ivabradine improves left ventricular dysfunction and intrinsic myocardial structure in congestive heart failure. Circulation 2004; 109: 1674–9.
34. Tardif JC, Ponikowski P, Kahan T et al. Efficacy of the I(f) current inhibitor ivabradine in patients with chronic stable angina receiving beta-blocker therapy: a 4-month, randomized, placebo-controlled trial. Eur Heart J 2009; 30 (5): 540–8.
35. Fox K, Ford I, Steg PG et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet 2008; 372: 807–16.
36. Swedberg K, Komajda M, Bohm M et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010; 376 (9744): 875–85.
37. Schon S, Schulz E, Wenzel P. Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress. Basic Res Cardiol 2011; 106: 1147–58.
38. Custodis F, Baumhäkel M, Schlimmer N et al. Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 2008; 117 (18): 2377–87.
39. Schirmer SH, Degen A, Baumhäkel M et al. Heart-rate reduction by If-channel inhibition with ivabradine restores collateral artery growth in hypercholesterolemic atherosclerosis. Eur Heart J 2012; 33 (10): 1223–31.
40. Busseuil D, Shi Y, Mecteau M et al. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 2010; 117 (3): 234–42.
41. Becher PM, Lindner D, Miteva K et al. Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and β-receptor blockade. Hypertension 2012; 59 (5): 949–57.
42. Tardif JC, O'Meara E, Komajda M. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J 2011; 32 (20): 2507–15.
43. Colak MC, Parlakpinar H, Tasdemir S et al. Therapeutic effects of ivabradine on hemodynamic parameters and cardiotoxicity induced by doxorubicin treatment in rat. Hum Exp Toxicol 2012; 31 (9): 945–54.
44. Решина И.В., Калягин А.Н., Середа Н.Н. Применение ивабрадина с целью купирования кардиотоксических эффектов у больных онкологическими заболеваниями, получающих полихимиотерапию Cons. Med. 2010; 12 (5): 110–3.
1 ГБОУ ВПО Московский государственный медико-стоматологический университет им. А.И.Евдокимова Минздрава РФ;
2 Городская клиническая больница №14 им. В.Г.Короленко, Москва;
3 Городская поликлиника №20, Москва
*eshkolnik@mail.ru