Системная психоневрология: современные представления о структурной и функциональной организации головного мозга
Системная психоневрология: современные представления о структурной и функциональной организации головного мозга
Дамулин И.В. Системная психоневрология: современные представления о структурной и функциональной организации головного мозга. Consilium Medicum. 2017; 19 (2): 8–13.
________________________________________________
Damulin I.V. System psychoneurology: current understanding of the structural and functional organization of the brain. Consilium Medicum. 2017; 19 (2): 8–13.
Системная психоневрология: современные представления о структурной и функциональной организации головного мозга
Дамулин И.В. Системная психоневрология: современные представления о структурной и функциональной организации головного мозга. Consilium Medicum. 2017; 19 (2): 8–13.
________________________________________________
Damulin I.V. System psychoneurology: current understanding of the structural and functional organization of the brain. Consilium Medicum. 2017; 19 (2): 8–13.
В статье рассматриваются современные аспекты структурной и функциональной деятельности центральной нервной системы. Подчеркивается значение концепции коннектома, построение которого основывается на результатах функциональной магнитно-резонансной томографии и заключается в выделении определенных церебральных регионов (областей), оценке связей между этими регионами и детальном анализе сети этих связей. Коннектом характеризуется динамичностью и функциональной гетерогенностью (возбуждающие, тормозящие, модулирующие зоны). Функционирование коннектома определяется энергетическим обменом в ткани головного мозга. «Скрытая» (или «внутренняя»), не связанная с внешними воздействиями энергия тратится на процессы оценки и выработку ответов/реакций на поступающие извне стимулы, а также, вероятно, на предвосхищение/предугадывание событий, которые могут произойти. При этом имеет значение не только уровень энергетического обмена, но и флюктуации «скрытой энергии». Головной мозг действует с системно-энергетической точки зрения в направлении минимизации собственных энергетических затрат. В статье делается вывод, что созданная в настоящее время модель (коннектом) является более информативной для понимания сущности процессов, происходящих в головном мозге, чем простая сумма частей, в нее входящих. Эта модель является ключевой в новом направлении развития нейронаук – системной психоневрологии.
Ключевые слова: структурная и функциональная организация головного мозга, коннектом, активность головного мозга в состоянии покоя, функциональные связи, методы функциональной нейровизуализации, синдром разобщения, системная психоневрология.
________________________________________________
The article deals with modern aspects of structural and functional activity of the central nervous system. Connectome is important due to its concept, the construction of which is based on the results of functional magnetic resonance imaging and involves the separation of certain cerebral regions (oblasts), evaluating the links between these regions and the detailed analysis of these network connections. Connectome is characterized by dynamic and functional heterogeneity (exciting, inhibiting, modulating area). Operations of connectome are determined by energy metabolism in brain tissue. "Hidden" (or "internal") is not linked to external influences energy is spent on the process of evaluating and developing responses/reactions to the stimuli coming from the outside, as well as, probably, in the anticipation/prediction of events that may occur. This is important not only to the level of energy metabolism, but also fluctuations "stored energy". The brain operates with system-energy point of view in the direction of minimizing their own energy consumption. The article concludes that created in the current model (connectome) is more informative for the understanding of the processes occurring in the brain than the simple sum of the parts belonging to it. This model is the key to a new direction of development of neuroscience – system psychoneurology.
Key words: structural and functional organization of the brain, connects brain activity at rest, functional relationships, methods of functional neuroimaging, disconnection syndrome, system psychoneurology.
1. Petersen SE, Sporns O. Brain networks and cognitive architectures. Neuron 2015; 88 (1): 207–19. DOI: 10.1016/j.neuron.2015.09.027
2. Sporns O, Betzel RF. Modular brain networks. Annual Review of Psychology 2016; 67 (1): 613–40. DOI: 10.1146/annurev-psych-122414-033634
3. Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Brain 2005; 128 (10): 2224–39. DOI: 10.1093/brain/awh622
4. Filley CE, Fields RD. White matter and cognition: making the connection. J Neurophysiology 2016; 116 (5): 2093–104. DOI: 10.1152/jn.00221.2016
5. Бехтерев В.М. Проводящие пути спинного и головного мозга. Руководство къ изученiю внутреннихъ связей мозга. Ч. II. Волокна мозжечка, волокна мозг. полушарий и общiй обзоръ провод. системъ. 2-е изд. СПб.: Изданie К.Л.Риккера, 1898; с. 383 / Bekhterev V.M. Provodiashchie puti spinnogo i golovnogo mozga. Rukovodstvo k izucheniiu vnutrennikh sviazei mozga. Ch. II. Volokna mozzhechka, volokna mozg. polusharii i obshchii obzor provod. sistem. 2-e izd. SPb.: Izdanie K.L.Rikkera, 1898; s. 383. [in Russian]
6. Geschwind N. Disconnexion syndromes in animals and man. Part I. Brain 1965; 88 (3): 237–94. DOI: 10.1093/brain/88.2.237
7. Geschwind N. Disconnexion syndromes in animals and man. Part II. Brain 1965; 88 (3): 585–644. DOI: 10.1093/brain/88.2.237
8. Mesulam M-M. Fifty years of disconnexion syndromes and the Geschwind legacy. Brain 2015; 138 (9): 2791–9. DOI: 10.1093/brain/awv198
9. Дамулин И.В. Корковые связи, синдром «разобщения» и высшие мозговые функции. Журн. неврологии и психиатрии им. С.С.Корсакова. 2015; 115 (11): 107–11. DOI: 10.17116/jnevro2015115111107-111 / Damulin I.V. Korkovye sviazi, sindrom “razobshcheniia” i vysshie mozgovye funktsii. Zhurn. nevrologii i psikhiatrii im. S.S.Korsakova. 2015; 115 (11): 107–11. DOI: 10.17116/jnevro2015115111107-111 [in Russian]
10. Дамулина А.И., Коновалов Р.Н., Кадыков А.С. Постинсультные когнитивные нарушения. Неврол. журн. 2015; 20 (1): 12–9. / Damulina A.I., Konovalov R.N., Kadykov A.S. Postinsul'tnye kognitivnye narusheniia. Nevrol. zhurn. 2015; 20 (1): 12–9. [in Russian]
11. Catani M, Mesulam M. What is a disconnection syndrome? Cortex 2008; 44 (8): 911–3. DOI: 10.1016/j.cortex.2008.05.001
12. Thiebaut de Schotten M, Kinkingnehun S, Delmaire C et al. Visualization of disconnection syndromes in humans. Cortex 2008; 44 (8): 1097–103. DOI: 10.1016/j.cortex.2008.02.003
13. Дамулин И.В., Сиволап Ю.П. Расстройство фронтосубкортикальных связей в нейропсихиатрии. Неврол. вестн. (Журн. им. В.М.Бехтерева). 2015; 4: 78–82. / Damulin I.V., Sivolap Iu.P. Rasstroistvo frontosubkortikal'nykh sviazei v neiropsikhiatrii. Nevrol. vestn. (Zhurn. im. V.M.Bekhtereva). 2015; 4: 78–82. [in Russian]
14. Дамулин И.В., Сиволап Ю.П. Неврологические нарушения при шизофрении: клинические особенности и патогенетические аспекты. Рос. мед. журн. 2016; 22 (5): 267–71. DOI: 10.18821/0869-2106-2016-22-5-267-271 / Damulin I.V., Sivolap Iu.P. Nevrologicheskie narusheniia pri shizofrenii: klinicheskie osobennosti i patogeneticheskie aspekty. Ros. med. zhurn. 2016; 22 (5): 267–71. DOI: 10.18821/0869-2106-2016-22-5-267-271 [in Russian]
15. Filley CM. White matter: beyond focal disconnection. Neurologic Clinics 2011; 29 (1): 81–97. DOI: 10.1016/j.ncl.2010.10.003
16. Bullmore E, Sporns O. The economy of brain network organization. Nature Reviews Neuroscience 2012; 13: 337–49. DOI: 10.1038/nrn3214
17. Nuallain SO, Doris T. Consciousness is cheap, even if symbols are expensive; metabolism and the brain’s dark energy. Biosemiotics 2011; 5 (2): 193–210. DOI: 10.1007/s12304-011-9136-y
18. Van den Heuvel MP, Bullmore ET, Sporns O. Comparative connectomics. Trends in Cognitive Sciences 2016; 20 (5): 345–61. DOI: 10.1016/j.tics.2016.03.001
19. Дамулин И.В. Особенности структурной и функциональной организации головного мозга. Журн. неврологии и психиатрии им. С.С.Корсакова. 2016; 116 (11): 163–8. DOI: 10.17116/jnevro2016116111163-168 / Damulin I.V. Osobennosti strukturnoi i funktsional'noi organizatsii golovnogo mozga. Zhurn. nevrologii i psikhiatrii im. S.S.Korsakova. 2016; 116 (11): 163–8. DOI: 10.17116/jnevro2016116111163-168 [in Russian]
20. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 2009; 10 (3): 186–98. DOI: 10.1038/nrn2575
21. Cao M, Wang Z, He Y. Connectomics in psychiatric research: advances and applications. Neuropsychiatric Dis Treatment 2015; 11: 2801–10. DOI: 10.2147/ndt.s63470
22. Lobo MK. Lighting up the brain's reward circuitry. Ann NY Acad Sci 2012; 1260 (1): 24–33. DOI: 10.1111/j.1749-6632.2011.06368.x
23. Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. NeuroImage 2009; 44 (3): 715–23. DOI: 10.1016/j.neuroimage.2008.09.062
24. Papo D, Buldu JM, Boccaletti S, Bullmore ET. Complex network theory and the brain. Philosophical Transactions of the Royal Society B: Biological Sciences 2014; 369 (1653): 20130520. DOI: 10.1098/rstb.2013.0520
25. Reid RC. From functional architecture to functional connectomics. Neuron 2012; 75 (2): 209–17. DOI: 10.1016/j.neuron.2012.06.031
26. Veldsman M, Cumming T, Brodtmann A. Beyond BOLD: Optimizing functional imaging in stroke populations. Hum Brain Mapping 2014; 36 (4): 1620–36. DOI: 10.1002/hbm.22711
27. Zhang D, Raichle ME. Disease and the brain's dark energy. Nat Rev Neurol 2010; 6 (1): 15–28. DOI: 10.1038/nrneurol.2009.198
28. Bandettini PA, Bullmor E. Endogenous oscillations and networks in functional magnetic resonance imaging. Hum Brain Mapping 2008; 29 (7): 737–9. DOI: 10.1002/hbm.20607
29. Fornito A, Bullmore ET. Connectomics: A new paradigm for understanding brain disease. Euro Neuropsychopharmacol 2015; 25 (5): 733–48. DOI: 10.1016/j.euroneuro.2014.02.011
30. Sporns O. Towards network substrates of brain disorders. Brain 2014; 137 (8): 2117–8. DOI: 10.1093/brain/awu148
31. Pessoa L. The Cognitive-Emotional Brain. From Interactions to Integration. Cambridge, London: The MIT Press, 2013; p. 320.
32. Дамулин И.В. Поражение затылочных отделов головного мозга: некоторые клинические, патогенетические и терапевтические особенности. Мед. совет. 2016; 4: 36–41. / Damulin I.V. Porazhenie zatylochnykh otdelov golovnogo mozga: nekotorye klinicheskie, patogeneticheskie i terapevticheskie osobennosti. Med. sovet. 2016; 4: 36–41. [in Russian]
33. De Renzi E. Disorders of visual recognition. Semin Neurol 2000; 20 (4): 479–85. DOI: 10.1055/s-2000-13181
34. Barton JJS. Disorders of color and object recognition. CONTINUUM: Lifelong Learning in Neurology 2010; 16 (4): 111–27. DOI: 10.1212/01.con.0000368264.61286.9b
35. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86 (4): 883–901. DOI: 10.1016/j.neuron.2015.03.035
36. Raichle ME, Snyder AZ. Intrinsic Brain Activity and Consciousness. In: The Neurology of Consciousness. Cognitive Neuroscience and Neuropathology. 2nd ed. Ed. by S.Laureys et al. Amsterdam etc: Elsevier Ltd, 2009; p. 81–8. DOI: 10.1016/b978-0-12-374168-4.00007-1
37. Robertson RM, Money TGA. Temperature and neuronal circuit function: compensation, tuning and tolerance. Curr Opin Neurobiol 2012; 22 (4): 724–34. DOI: 10.1016/j.conb.2012.01.008
38. Gailliot MT. Unlocking the energy dynamics of executive functioning: linking executive functioning to brain glycogen. Perspect Psychol Sci 2008; 3 (4): 245–63. DOI: 10.1111/j.1745-6924.2008.00077.x
39. Raichle ME. Two views of brain function. Trends Cognitive Sci 2010; 14 (4): 180–90. DOI: 10.1016/j.tics.2010.01.008
40. Holcman D, Tsodyks M. The emergence of up and down states in cortical networks. PLoS Computational Biology 2006; 2 (3): e23. DOI: 10.1371/journal.pcbi.0020023
41. Harrington DL, Rubinov M, Durgerian S et al. For the PREDICT-HD investigators of the Huntington Study Group and Rao S.M. Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain 2015; 138 (8): 2332–46. DOI: 10.1093/brain/awv145
42. Llinas RR, Roy S. The ‘prediction imperative’ as the basis for self-awareness. Philosophical Transactions of the Royal Society B: Biological Sciences 2009; 364 (1521): 1301–7. DOI: 10.1098/rstb.2008.0309
43. Botvinick MM. Hierarchical reinforcement learning and decision making. Curr Opin Neurobiol 2012; 22 (6): 956–62. DOI: 10.1016/j.conb.2012.05.008
44. Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia 2002; 40 (10): 1675–89. DOI: 10.1016/s0028-3932(02)00015-5
45. Clark L, Bechara A, Damasio H et al. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 2007; 131 (5): 1311–22. DOI: 10.1093/brain/awn066
46. Sallet J, Mars RB, Quilodran R et al. Neuroanatomical basis of motivational and cognitive control: a focus on the medial and lateral prefrontal cortex. In: Neural Basis of Motivational and Cognitive Control. Ed. by R.B.Mars et al. London, Cambridge: The MIT Press, 2011; p. 5–20.
47. Yu JY, Frank LM. Hippocampal–cortical interaction in decision making. Neurobiol Learn Mem 2015; 117: 34–41. DOI: 10.1016/j.nlm.2014.02.002
48. Llinas RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 2009; 162 (3): 797–804. DOI: 10.1016/j.neuroscience.2009.04.045
49. Fidelman U. Intelligence and transmission errors in the brain. Kybernetes 1996; 25 (2): 10–23. DOI: 10.1108/03684929610114619
50. Fidelman U. Neural transmission-errors, cerebral arousability and hemisphericity. Some relations with intelligence and personality. Kybernetes 1999; 28 (6/7): 695–725. DOI: 10.1108/03684929910282962
51. Fidelman U. Temporal and simultaneous processing in the brain: a possible cellular basis of cognition. Kybernetes 2002; 31 (3/4): 432–81. DOI: 10.1108/03684920210422566
52. Northoff G, Duncan NW, Hayes DJ. The brain and its resting state activity – Experimental and methodological implications. Prog Neurobiol 2010; 92 (4): 593–600. DOI: 10.1016/j.pneurobio.2010.09.002
53. Kitzbichler MG, Henson RNA, Smith ML et al. Cognitive effort drives workspace configuration of human brain functional networks. J Neuroscience 2011; 31 (22): 8259–70. DOI: 10.1523/jneurosci.0440-11.2011
54. Fidelman U. Intelligence and the brain’s energy consumption: what is intelligence? Personality and Individual Differences 1993; 14 (1): 283–6. DOI: 10.1016/0191-8869(93)90206-i
55. Buzsaki G. Rhythms of the Brain. New York: Oxford University Press, 2006; p. 448.
56. Micheloyannis S, Vourkas M, Tsirka V et al. The influence of ageing on complex brain networks: a graph theoretical analysis. Hum Brain Mapping 2009; 30: 200–8. DOI: 10.1002/hbm.20492
57. Fidelman U. Creativity: relation to neural transmission errors. Kybernetes 2011; 40 (5/6): 697–702. DOI: 10.1108/03684921111142250
58. Bendetowicz D, Urbanski M., Garcin B et al. Brain correlates of creative abilities to combine remote ideas in healthy subjects and in patients. In J Psychophysiol 2016; 108: 56. DOI: 10.1016/j.ijpsycho.2016.07.187
59. Labudda K, Woermann FG, Mertens M et al. Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Experimental Brain Res 2008; 187 (4): 641–50. DOI: 10.1007/s00221-008-1332-x
60. Melancon G, Joanette Y. Chaos, brain, and cognition: toward a nonlinear order? Brain Cognition 2000; 42: 33–6. DOI: 10.1006/brcg.1999.1154
61. Corlett PR, Murray GK, Honey GD et al. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain 2007; 130 (9): 2387–400. DOI: 10.1093/brain/awm173
62. A critical look at connectomics (editorial). Nat Neurosci 2010; 13 (12): 1441. DOI: 10.1038/nn1210-1441
63. Crossley NA, Mechelli A, Scott J et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014; 137 (8): 2382–95. DOI 10.1093/brain/awu132
64. Kim D-J, Skosnik PD, Cheng H et al. Structural network topology revealed by white matter tractography in cannabis users: a graph theoretical analysis. Br Connectiv 2011; 1 (6): 473–83. DOI: 10.1089/brain.2011.0053
65. Dumas EM, van den Bogaard SJA, Hart EP et al. Reduced functional brain connectivity prior to and after disease onset in Huntington's disease. Neuro Image Clin 2013; 2: 377–84. DOI: 10.1016/j.nicl.2013.03.001
66. Leaver AM, Turesky TK, Seydell-Greenwald A et al. Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapping 2016; 37 (8): 2717–35. DOI: 10.1002/hbm.23204
67. Peer M, Nitzan M, Goldberg I et al. Reversible functional connectivity disturbances during transient global amnesia. Ann Neurol 2014; 75 (5): 634–43. DOI: 10.1002/ana.24137
________________________________________________
1. Petersen SE, Sporns O. Brain networks and cognitive architectures. Neuron 2015; 88 (1): 207–19. DOI: 10.1016/j.neuron.2015.09.027
2. Sporns O, Betzel RF. Modular brain networks. Annual Review of Psychology 2016; 67 (1): 613–40. DOI: 10.1146/annurev-psych-122414-033634
3. Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Brain 2005; 128 (10): 2224–39. DOI: 10.1093/brain/awh622
4. Filley CE, Fields RD. White matter and cognition: making the connection. J Neurophysiology 2016; 116 (5): 2093–104. DOI: 10.1152/jn.00221.2016
5. Bekhterev V.M. Provodiashchie puti spinnogo i golovnogo mozga. Rukovodstvo k izucheniiu vnutrennikh sviazei mozga. Ch. II. Volokna mozzhechka, volokna mozg. polusharii i obshchii obzor provod. sistem. 2-e izd. SPb.: Izdanie K.L.Rikkera, 1898; s. 383. [in Russian]
6. Geschwind N. Disconnexion syndromes in animals and man. Part I. Brain 1965; 88 (3): 237–94. DOI: 10.1093/brain/88.2.237
7. Geschwind N. Disconnexion syndromes in animals and man. Part II. Brain 1965; 88 (3): 585–644. DOI: 10.1093/brain/88.2.237
8. Mesulam M-M. Fifty years of disconnexion syndromes and the Geschwind legacy. Brain 2015; 138 (9): 2791–9. DOI: 10.1093/brain/awv198
9. Damulin I.V. Korkovye sviazi, sindrom “razobshcheniia” i vysshie mozgovye funktsii. Zhurn. nevrologii i psikhiatrii im. S.S.Korsakova. 2015; 115 (11): 107–11. DOI: 10.17116/jnevro2015115111107-111 [in Russian]
10. Damulina A.I., Konovalov R.N., Kadykov A.S. Postinsul'tnye kognitivnye narusheniia. Nevrol. zhurn. 2015; 20 (1): 12–9. [in Russian]
11. Catani M, Mesulam M. What is a disconnection syndrome? Cortex 2008; 44 (8): 911–3. DOI: 10.1016/j.cortex.2008.05.001
12. Thiebaut de Schotten M, Kinkingnehun S, Delmaire C et al. Visualization of disconnection syndromes in humans. Cortex 2008; 44 (8): 1097–103. DOI: 10.1016/j.cortex.2008.02.003
13. Damulin I.V., Sivolap Iu.P. Rasstroistvo frontosubkortikal'nykh sviazei v neiropsikhiatrii. Nevrol. vestn. (Zhurn. im. V.M.Bekhtereva). 2015; 4: 78–82. [in Russian]
14. Damulin I.V., Sivolap Iu.P. Nevrologicheskie narusheniia pri shizofrenii: klinicheskie osobennosti i patogeneticheskie aspekty. Ros. med. zhurn. 2016; 22 (5): 267–71. DOI: 10.18821/0869-2106-2016-22-5-267-271 [in Russian]
15. Filley CM. White matter: beyond focal disconnection. Neurologic Clinics 2011; 29 (1): 81–97. DOI: 10.1016/j.ncl.2010.10.003
16. Bullmore E, Sporns O. The economy of brain network organization. Nature Reviews Neuroscience 2012; 13: 337–49. DOI: 10.1038/nrn3214
17. Nuallain SO, Doris T. Consciousness is cheap, even if symbols are expensive; metabolism and the brain’s dark energy. Biosemiotics 2011; 5 (2): 193–210. DOI: 10.1007/s12304-011-9136-y
18. Van den Heuvel MP, Bullmore ET, Sporns O. Comparative connectomics. Trends in Cognitive Sciences 2016; 20 (5): 345–61. DOI: 10.1016/j.tics.2016.03.001
19. Damulin I.V. Osobennosti strukturnoi i funktsional'noi organizatsii golovnogo mozga. Zhurn. nevrologii i psikhiatrii im. S.S.Korsakova. 2016; 116 (11): 163–8. DOI: 10.17116/jnevro2016116111163-168 [in Russian]
20. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 2009; 10 (3): 186–98. DOI: 10.1038/nrn2575
21. Cao M, Wang Z, He Y. Connectomics in psychiatric research: advances and applications. Neuropsychiatric Dis Treatment 2015; 11: 2801–10. DOI: 10.2147/ndt.s63470
22. Lobo MK. Lighting up the brain's reward circuitry. Ann NY Acad Sci 2012; 1260 (1): 24–33. DOI: 10.1111/j.1749-6632.2011.06368.x
23. Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. NeuroImage 2009; 44 (3): 715–23. DOI: 10.1016/j.neuroimage.2008.09.062
24. Papo D, Buldu JM, Boccaletti S, Bullmore ET. Complex network theory and the brain. Philosophical Transactions of the Royal Society B: Biological Sciences 2014; 369 (1653): 20130520. DOI: 10.1098/rstb.2013.0520
25. Reid RC. From functional architecture to functional connectomics. Neuron 2012; 75 (2): 209–17. DOI: 10.1016/j.neuron.2012.06.031
26. Veldsman M, Cumming T, Brodtmann A. Beyond BOLD: Optimizing functional imaging in stroke populations. Hum Brain Mapping 2014; 36 (4): 1620–36. DOI: 10.1002/hbm.22711
27. Zhang D, Raichle ME. Disease and the brain's dark energy. Nat Rev Neurol 2010; 6 (1): 15–28. DOI: 10.1038/nrneurol.2009.198
28. Bandettini PA, Bullmor E. Endogenous oscillations and networks in functional magnetic resonance imaging. Hum Brain Mapping 2008; 29 (7): 737–9. DOI: 10.1002/hbm.20607
29. Fornito A, Bullmore ET. Connectomics: A new paradigm for understanding brain disease. Euro Neuropsychopharmacol 2015; 25 (5): 733–48. DOI: 10.1016/j.euroneuro.2014.02.011
30. Sporns O. Towards network substrates of brain disorders. Brain 2014; 137 (8): 2117–8. DOI: 10.1093/brain/awu148
31. Pessoa L. The Cognitive-Emotional Brain. From Interactions to Integration. Cambridge, London: The MIT Press, 2013; p. 320.
32. Damulin I.V. Porazhenie zatylochnykh otdelov golovnogo mozga: nekotorye klinicheskie, patogeneticheskie i terapevticheskie osobennosti. Med. sovet. 2016; 4: 36–41. [in Russian]
33. De Renzi E. Disorders of visual recognition. Semin Neurol 2000; 20 (4): 479–85. DOI: 10.1055/s-2000-13181
34. Barton JJS. Disorders of color and object recognition. CONTINUUM: Lifelong Learning in Neurology 2010; 16 (4): 111–27. DOI: 10.1212/01.con.0000368264.61286.9b
35. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86 (4): 883–901. DOI: 10.1016/j.neuron.2015.03.035
36. Raichle ME, Snyder AZ. Intrinsic Brain Activity and Consciousness. In: The Neurology of Consciousness. Cognitive Neuroscience and Neuropathology. 2nd ed. Ed. by S.Laureys et al. Amsterdam etc: Elsevier Ltd, 2009; p. 81–8. DOI: 10.1016/b978-0-12-374168-4.00007-1
37. Robertson RM, Money TGA. Temperature and neuronal circuit function: compensation, tuning and tolerance. Curr Opin Neurobiol 2012; 22 (4): 724–34. DOI: 10.1016/j.conb.2012.01.008
38. Gailliot MT. Unlocking the energy dynamics of executive functioning: linking executive functioning to brain glycogen. Perspect Psychol Sci 2008; 3 (4): 245–63. DOI: 10.1111/j.1745-6924.2008.00077.x
39. Raichle ME. Two views of brain function. Trends Cognitive Sci 2010; 14 (4): 180–90. DOI: 10.1016/j.tics.2010.01.008
40. Holcman D, Tsodyks M. The emergence of up and down states in cortical networks. PLoS Computational Biology 2006; 2 (3): e23. DOI: 10.1371/journal.pcbi.0020023
41. Harrington DL, Rubinov M, Durgerian S et al. For the PREDICT-HD investigators of the Huntington Study Group and Rao S.M. Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain 2015; 138 (8): 2332–46. DOI: 10.1093/brain/awv145
42. Llinas RR, Roy S. The ‘prediction imperative’ as the basis for self-awareness. Philosophical Transactions of the Royal Society B: Biological Sciences 2009; 364 (1521): 1301–7. DOI: 10.1098/rstb.2008.0309
43. Botvinick MM. Hierarchical reinforcement learning and decision making. Curr Opin Neurobiol 2012; 22 (6): 956–62. DOI: 10.1016/j.conb.2012.05.008
44. Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia 2002; 40 (10): 1675–89. DOI: 10.1016/s0028-3932(02)00015-5
45. Clark L, Bechara A, Damasio H et al. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 2007; 131 (5): 1311–22. DOI: 10.1093/brain/awn066
46. Sallet J, Mars RB, Quilodran R et al. Neuroanatomical basis of motivational and cognitive control: a focus on the medial and lateral prefrontal cortex. In: Neural Basis of Motivational and Cognitive Control. Ed. by R.B.Mars et al. London, Cambridge: The MIT Press, 2011; p. 5–20.
47. Yu JY, Frank LM. Hippocampal–cortical interaction in decision making. Neurobiol Learn Mem 2015; 117: 34–41. DOI: 10.1016/j.nlm.2014.02.002
48. Llinas RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 2009; 162 (3): 797–804. DOI: 10.1016/j.neuroscience.2009.04.045
49. Fidelman U. Intelligence and transmission errors in the brain. Kybernetes 1996; 25 (2): 10–23. DOI: 10.1108/03684929610114619
50. Fidelman U. Neural transmission-errors, cerebral arousability and hemisphericity. Some relations with intelligence and personality. Kybernetes 1999; 28 (6/7): 695–725. DOI: 10.1108/03684929910282962
51. Fidelman U. Temporal and simultaneous processing in the brain: a possible cellular basis of cognition. Kybernetes 2002; 31 (3/4): 432–81. DOI: 10.1108/03684920210422566
52. Northoff G, Duncan NW, Hayes DJ. The brain and its resting state activity – Experimental and methodological implications. Prog Neurobiol 2010; 92 (4): 593–600. DOI: 10.1016/j.pneurobio.2010.09.002
53. Kitzbichler MG, Henson RNA, Smith ML et al. Cognitive effort drives workspace configuration of human brain functional networks. J Neuroscience 2011; 31 (22): 8259–70. DOI: 10.1523/jneurosci.0440-11.2011
54. Fidelman U. Intelligence and the brain’s energy consumption: what is intelligence? Personality and Individual Differences 1993; 14 (1): 283–6. DOI: 10.1016/0191-8869(93)90206-i
55. Buzsaki G. Rhythms of the Brain. New York: Oxford University Press, 2006; p. 448.
56. Micheloyannis S, Vourkas M, Tsirka V et al. The influence of ageing on complex brain networks: a graph theoretical analysis. Hum Brain Mapping 2009; 30: 200–8. DOI: 10.1002/hbm.20492
57. Fidelman U. Creativity: relation to neural transmission errors. Kybernetes 2011; 40 (5/6): 697–702. DOI: 10.1108/03684921111142250
58. Bendetowicz D, Urbanski M., Garcin B et al. Brain correlates of creative abilities to combine remote ideas in healthy subjects and in patients. In J Psychophysiol 2016; 108: 56. DOI: 10.1016/j.ijpsycho.2016.07.187
59. Labudda K, Woermann FG, Mertens M et al. Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Experimental Brain Res 2008; 187 (4): 641–50. DOI: 10.1007/s00221-008-1332-x
60. Melancon G, Joanette Y. Chaos, brain, and cognition: toward a nonlinear order? Brain Cognition 2000; 42: 33–6. DOI: 10.1006/brcg.1999.1154
61. Corlett PR, Murray GK, Honey GD et al. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain 2007; 130 (9): 2387–400. DOI: 10.1093/brain/awm173
62. A critical look at connectomics (editorial). Nat Neurosci 2010; 13 (12): 1441. DOI: 10.1038/nn1210-1441
63. Crossley NA, Mechelli A, Scott J et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014; 137 (8): 2382–95. DOI 10.1093/brain/awu132
64. Kim D-J, Skosnik PD, Cheng H et al. Structural network topology revealed by white matter tractography in cannabis users: a graph theoretical analysis. Br Connectiv 2011; 1 (6): 473–83. DOI: 10.1089/brain.2011.0053
65. Dumas EM, van den Bogaard SJA, Hart EP et al. Reduced functional brain connectivity prior to and after disease onset in Huntington's disease. Neuro Image Clin 2013; 2: 377–84. DOI: 10.1016/j.nicl.2013.03.001
66. Leaver AM, Turesky TK, Seydell-Greenwald A et al. Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapping 2016; 37 (8): 2717–35. DOI: 10.1002/hbm.23204
67. Peer M, Nitzan M, Goldberg I et al. Reversible functional connectivity disturbances during transient global amnesia. Ann Neurol 2014; 75 (5): 634–43. DOI: 10.1002/ana.24137
Авторы
И.В.Дамулин
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 damulin@mmascience.ru
________________________________________________
I.V.Damulin
I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2 damulin@mmascience.ru