Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Полиморфизм генов SOCS5 и EGFR при бронхиальной астме
Полиморфизм генов SOCS5 и EGFR при бронхиальной астме
Аверьянов А.Б., Черкашина И.И., Никулина С.Ю., Шестовицкий В.А. Полиморфизм генов SOCS5 и EGFR при бронхиальной астме. Consilium Medicum. 2018; 20 (3): 45–47. DOI: 10.26442/2075-1753_20.3.45-47
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
В представленной статье отражен научный обзор литературных данных за последние 20 лет, касающихся гена – супрессора цитокиновых сигналов (SOCS5) и гена рецептора эпидермального фактора роста (EGFR), на основе материалов баз данных OMIM, PubMed. Были проанализированы механизмы действия генов SOCS5 и EGFR, их структура и функционирование белков, кодируемых этими генами. Также отражены данные опубликованных исследований, которые свидетельствуют о роли генов SOCS5 и EGFR в развитии патологии органов дыхания и других систем органов. На примере ряда исследований продемонстрирована ассоциация данных генов с влиянием на развитие бронхиальной астмы.
Ключевые слова: ген, SOCS5, EGFR, однонуклеотидный полиморфизм, мультифакториальное заболевание, бронхиальная астма.
Key words: gene, SOCS5, EGFR, SNP, multifactorial disease, bronchial asthma.
Ключевые слова: ген, SOCS5, EGFR, однонуклеотидный полиморфизм, мультифакториальное заболевание, бронхиальная астма.
________________________________________________
Key words: gene, SOCS5, EGFR, SNP, multifactorial disease, bronchial asthma.
Полный текст
Список литературы
1. March ME, Sleiman PM, Hakonarson H. The genetics of asthma and allergic disorders. Discovery Medicine 2011; 56 (11): 35–45.
2. Салтыкова И.В., Фрейдин М.Б., Брагина Е.Ю. и др. Ассоциация полиморфизма rs6737848 гена SOCS5 с бронхиальной астмой. Вестн. Рос. академии медицинских наук. 2013; 7: 53–6. DOI: 10.15690/vramn.v68i7.713 / Saltykova I.V., Freidin M.B., Bragina E.Iu. i dr. Assotsiatsiia polimorfizma rs6737848 gena SOCS5 s bronkhial'noi astmoi. Vestn. Ros. akademii meditsinskikh nauk. 2013; 7: 53–6. DOI: 10.15690/vramn.v68i7.713 [in Russian]3. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2016 [Accessed 2016]. Available on [www.ginasthma.org].
4. Чучалин А.Г. Бронхиальная астма. М.: Медицина, 2003. / Chuchalin A.G. Bronkhial'naia astma. M.: Meditsina, 2003. [in Russian]
5. Чучалин А.Г., Илькович М.М. Справочник по пульмонологии. М.: ГЭОТАР-Медиа, 2014. / Chuchalin A.G., Il'kovich M.M. Spravochnik po pul'monologii. M.: GEOTAR-Media, 2014. [in Russian]
6. Фрейдин М.Б., Огородова Л.М., Цой А.Н., Бердникова Н.Г. Генетика бронхиальной астмы. Генетика бронхолегочных заболеваний. М.: Атмосфера, 2010; с. 78–104. / Freidin M.B., Ogorodova L.M., Tsoi A.N., Berdnikova N.G. Genetikabronkhial'noi astmy. Genetika bronkholegochnykh zabolevanii. M.: Atmosfera, 2010; s. 78–104. [in Russian].
7. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nature Reviews Immunology 2008; 8 (3): 169–82. DOI: 10.1038/nri2257
8. Балаболкин И.И., Булгакова В.А. Генетические аспекты формирования эффективности и безопасности фармакотерапии и атопической бронхиальной астмы у детей. Фарматека. 2016; 14: 14–9./ Balabolkin I.I., Bulgakova V.A. Geneticheskie aspekty formirovaniia effektivnosti i bezopasnosti farmakoterapii atopicheskoi bronkhial'noi astmy u detei. Farmateka. 2016; 14: 14–9. [in Russian]
9. Разводовская А.В., Черкашина И.И., Никулина С.Ю. и др. Изучение ассоциации однонуклеотидного полиморфизма rsl800470 гена трансформирующего фактора роста бета 1 (TGF-b1) с риском развития бронхиальной астмы. Сиб. мед. обозрение. 2014; 2: 17–22. DOI: 10.20333/25000136-2014-2-17-22. / Razvodovskaia A.V., Cherkashina I.I., Nikulina S.Iu. i dr. Izuchenie assotsiatsii odnonukleotidnogo polimorfizma rsl800470 gena transformiruiushchego faktora rosta beta 1 (TGF-b1) s riskom razvitiia bronkhial'noi astmy. Sib. med. obozrenie. 2014; 2: 17–22. DOI: 10.20333/25000136-2014-2-17-22. [in Russian]
10. Черкашина И.И., Никулина С.Ю., Максимов В.Н. и др. Особенности полиморфизма гена хемокинового рецептора CCR2 у больных бронхиальной астмой и хронической обструктивной болезнью легких. Сиб. мед. обозрение. 2013; 2: 19–23. / Cherkashina I.I., Nikulina S.Iu., Maksimov V.N. i dr. Osobennosti polimorfizma gena khemokinovogo retseptora CCR2 u bol'nykh bronkhial'noi astmoi i khronicheskoi obstruktivnoi bolezn'iu legkikh. Sib. med. obozrenie. 2013; 2: 19–23. [in Russian]
11. Li Y, Wu B, Xiong H et al. Polymorphisms of STAT-6, STAT-4 and IFN-gamma genes and the risk of asthma in Chinese population. Respir Med 2007; 101 (9): 1977–81. DOI: 10.1016/j.rmed.2007.04.006
12. Hsieh YY, Wan L, Chang CC et al. STAT2*C related genotypes and allele but not TLR4 and CD40 gene polymorphisms are associated with higher susceptibility for asthma. Int J Biol Sci 2009; 5 (1): 74–81. DOI: 10.7150/ijbs.5.74
13. Ege MJ, Mayer M, Schwaiger K et al. Environmental bacteria and childhood asthma. Allergy 2012; 67 (12): 1565–71. DOI: 10.1111/all.12028
14. Hilty M, Burke C, Pedro H et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5 (1): е8578. DOI: 10.1371/journal.pone.0008578
15. Seki Y, Hayashi K, Matsumoto A et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proceedings of the National Academy of Sciences of the USA. 2002; 99 (20): 13003–8. DOI: 10.1073/pnas.202477099
16. O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998; 8 (3): 275–83. DOI: 10.1016/s1074-7613(00)80533-6
17. Хаитов Р.М., Пинегин Б.В., Ярилин А.А. Руководство по клинической иммунологии. Диагностика заболеваний иммунной системы: Руководство для врачей. М.: ГЭОТАР-Медиа, 2009. / Khaitov R.M., Pinegin B.V., Iarilin A.A. Rukovodstvo po klinicheskoi immunologii. Diagnostika zabolevanii immunnoi sistemy: Rukovodstvo dlia vrachei. M.: GEOTAR-Media, 2009. [in Russian]
18. Athanassakis I, Vassiliadis S. T regulatory cells: are we re-discovering T suppressors. Immunology Letters 2002; 84: 179–83. DOI: 10.1016/s0165-2478(02)00182-7
19. Murphy KM, Ouyang W, Farrar JD et al. Signaling and transcription in T helper development. Аnnu Rev Immunol 2000; 18: 451–94. DOI: 10.1146/annurev.immunol.18.1.451
20. Фрейдлин И.С. Регуляторные Т-клетки: происхождение и функции. Мед. иммунология. 2005; 7 (4): 347–54. / Freidlin I.S. Reguliatornye T-kletki: proiskhozhdenie i funktsii. Med. immunologiia. 2005; 7 (4): 347–54. [in Russian]
21. Ouyang W, Lohning M, Gao Z et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12: 27–37. DOI: 10.1016/s1074-7613(00)80156-9
22. Lee H-J, Takemoto N, Kurata H et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000; 192: 105–15. DOI: 10.1084/jem.192.1.105
23. Kubo M, Ransom J, Webb D et al. T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6. The EMBO J 1997; 16: 4007–20. DOI: 10.1093/emboj/16.13.4007
24. Huang H, Paul WE. Impaired interleukin 4 signaling in T helper type 1 cells. J of Exp Med 1998; 187: 1305–313. DOI: 10.1084/jem.187.8.1305
25. Hsu SC, Miller SA, Wang Y, Hung MC. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res 2009; 1: 249–58. DOI: 10.1158/0008-5472.can-10-2384
26. Bai J, Guo XG, Bai XP. Epidermal growth factor receptor-related DNA repair and radiation-resistance regulatory mechanisms: a mini-review. Asia Pac J Cancer Prevent 2012; 13: 4879–81. DOI: 10.7314/apjcp.2012.13.10.4879
27. Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2007; 83: 781–91. DOI: 10.1080/09553000701769970
28. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–81. DOI: 10.1038/nrc2088
29. Albitar L, Pickett G, Morgan M et al. EGFR isoforms and gene regulation in human endometrial cancer cells. Molecular Cancer 2010; 9: 166. DOI: 10.1186/1476-4598-9-166
30. Guillaudeau A, Durand K, Rabinovitch-Chable H et al. Adult diffuse gliomas produce mRNA transcripts encoding EGFR isoforms lacking a tyrosine kinase domain. Int J Oncol 2012; 40: 1142–52. DOI: 10.3892/ijo.2011.1287
31. Arau JA, Ribeiro R, Azevedo I et al. Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer – a review of the literature. Oncologist 2007; 12: 201–10. DOI: 10.1634/theoncologist.12-2-201
32. Yang PW, Hsieh MS, Huang YC et al. Genetic variants of EGF and VEGF predict prognosis of patients with advanced esophageal squamous cell carcinoma. PLoS One 2014; 9 (6): e100326. DOI: 10.1371/journal.pone.0100326
33. Zhang J, Zhan Z, Wu J et al. Association among polymorphisms in EGFR gene exons, lifestyle and risk of gastric cancer with gender differences in Chinese Han subjects. PLoS One 2013; 8 (3): e59254. DOI: 10.1371/journal.pone.0059254
34. Gerger A, El-Khoueiry A, Zhang W et al. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 2011; 17 (17): 5783–92. DOI: 10.1158/1078-0432.CCR-11-1115
35. Li C, Wei R, Jones-Hall YL et al. Epidermal growth factor receptor (EGFR) pathway genes and interstitial lung disease: an association study. Sci Reports 2014; 4: 4893. DOI: 10.1038/srep04893
36. Huang CM, Chen HH, Chen DC et al. Rheumatoid arthritis is associated with rs17337023 polymorphism and increased serum level of the EGFR protein. PLoS One 2017; 12 (7): e0180604. DOI: 10.1371/journal.pone.0180604
37. Yoshikawa T, Kanazawa H. Integrated effect of EGFR and PAR-1 signaling crosstalk on airway hyperresponsiveness. Int J Mol Med 2012; 30 (1): 41–8. DOI: 10.3892/ijmm.2012.981
38. Le Cras TD, Acciani TH, Mushaben EM et al. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am J Physiol Lung Cell Mol Physiolog 2011; 300 (3): 414–21. DOI: 10.1152/ajplung.00346.2010
39. Hilton DJ. Negative regulators of cytokine signal transduction. Cell Mol Life Sci 1999; 55: 1568–77. DOI: 10.1007/s000180050396
40. Naka T, Fujimoto M, Kishimoto T. Negative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem Sci 1999; 24: 394–8. DOI: 10.1016/s0968-0004(99)01454-1
41. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Аnnu Rev Immunol 2000; 18: 143–64. DOI: 10.1146/annurev.immunol.18.1.143
42. Feng ZP, Chandrashekaran IR, Low A et al. The N-terminal domains of SOCS proteins: a conserved region in the disordered N-termini of SOCS4 and 5. Proteins 2012; 80 (3): 946–57. DOI: 10.1002/prot.23252
43. Saltykova IV, Ogorodova LM, Bragina EY et al. Opisthorchis felineus liver fluke invasion is an environmental factor modifying genetic risk of atopic bronchial asthma. Acta Tropica 2014; 139: 53–6. DOI: 10.1016/j.actatropica.2014.07.004
44. Linossi EM, Chandrashekaran IR, Kolesnik TB et al. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 2013; 8 (8): e70536. DOI: 10.1371/journal.pone.0070536
45. Zhuang G, Wu X, Jiang Z et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. The EMBO J 2012; 31 (17): 3513–23. DOI: 10.1038/emboj.2012.183
46. Yoon S, Yi YS, Kim SS et al. SOCS5 and SOCS6 have similar expression patterns in normal and cancer tissues. Tumour Biol 2012; 33 (1): 215–21. DOI: 10.1007/s13277-011-0264-4
47. Ozaki A, Seki Y, Fukushima A, Kubo M. The control of allergic conjunctivitis by suppressor of cytokine signaling (SOCS)3 and SOCS5 in a murine model. J Immunol 2005; 175 (8): 5489–97. DOI: 10.4049/jimmunol.175.8.5489
48. Toghi M, Taheri M, Arsang-Jang S et al. SOCS gene family expression profile in the blood of multiple sclerosis patients. J Neurol Sci 2017; 375: 481–5. DOI: 10.1016/j.jns.2017.02.015
49. Kario E, Marmor MD, Adamsky K et al. Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chemistry 2005; 280 (8): 7038–48. DOI: 10.1074/jbc.M408575200
________________________________________________
1. March ME, Sleiman PM, Hakonarson H. The genetics of asthma and allergic disorders. Discovery Medicine 2011; 56 (11): 35–45.
2. Saltykova I.V., Freidin M.B., Bragina E.Iu. i dr. Assotsiatsiia polimorfizma rs6737848 gena SOCS5 s bronkhial'noi astmoi. Vestn. Ros. akademii meditsinskikh nauk. 2013; 7: 53–6. DOI: 10.15690/vramn.v68i7.713 [in Russian]
3. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2016 [Accessed 2016]. Available on [www.ginasthma.org].
4. Chuchalin A.G. Bronkhial'naia astma. M.: Meditsina, 2003. [in Russian]
5. Chuchalin A.G., Il'kovich M.M. Spravochnik po pul'monologii. M.: GEOTAR-Media, 2014. [in Russian]
6. Freidin M.B., Ogorodova L.M., Tsoi A.N., Berdnikova N.G. Genetikabronkhial'noi astmy. Genetika bronkholegochnykh zabolevanii. M.: Atmosfera, 2010; s. 78–104. [in Russian].
7. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nature Reviews Immunology 2008; 8 (3): 169–82. DOI: 10.1038/nri2257
8. Balabolkin I.I., Bulgakova V.A. Geneticheskie aspekty formirovaniia effektivnosti i bezopasnosti farmakoterapii atopicheskoi bronkhial'noi astmy u detei. Farmateka. 2016; 14: 14–9. [in Russian]
9. Razvodovskaia A.V., Cherkashina I.I., Nikulina S.Iu. i dr. Izuchenie assotsiatsii odnonukleotidnogo polimorfizma rsl800470 gena transformiruiushchego faktora rosta beta 1 (TGF-b1) s riskom razvitiia bronkhial'noi astmy. Sib. med. obozrenie. 2014; 2: 17–22. DOI: 10.20333/25000136-2014-2-17-22. [in Russian]
10. Cherkashina I.I., Nikulina S.Iu., Maksimov V.N. i dr. Osobennosti polimorfizma gena khemokinovogo retseptora CCR2 u bol'nykh bronkhial'noi astmoi i khronicheskoi obstruktivnoi bolezn'iu legkikh. Sib. med. obozrenie. 2013; 2: 19–23. [in Russian]
11. Li Y, Wu B, Xiong H et al. Polymorphisms of STAT-6, STAT-4 and IFN-gamma genes and the risk of asthma in Chinese population. Respir Med 2007; 101 (9): 1977–81. DOI: 10.1016/j.rmed.2007.04.006
12. Hsieh YY, Wan L, Chang CC et al. STAT2*C related genotypes and allele but not TLR4 and CD40 gene polymorphisms are associated with higher susceptibility for asthma. Int J Biol Sci 2009; 5 (1): 74–81. DOI: 10.7150/ijbs.5.74
13. Ege MJ, Mayer M, Schwaiger K et al. Environmental bacteria and childhood asthma. Allergy 2012; 67 (12): 1565–71. DOI: 10.1111/all.12028
14. Hilty M, Burke C, Pedro H et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5 (1): е8578. DOI: 10.1371/journal.pone.0008578
15. Seki Y, Hayashi K, Matsumoto A et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proceedings of the National Academy of Sciences of the USA. 2002; 99 (20): 13003–8. DOI: 10.1073/pnas.202477099
16. O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998; 8 (3): 275–83. DOI: 10.1016/s1074-7613(00)80533-6
17. Khaitov R.M., Pinegin B.V., Iarilin A.A. Rukovodstvo po klinicheskoi immunologii. Diagnostika zabolevanii immunnoi sistemy: Rukovodstvo dlia vrachei. M.: GEOTAR-Media, 2009. [in Russian]
18. Athanassakis I, Vassiliadis S. T regulatory cells: are we re-discovering T suppressors. Immunology Letters 2002; 84: 179–83. DOI: 10.1016/s0165-2478(02)00182-7
19. Murphy KM, Ouyang W, Farrar JD et al. Signaling and transcription in T helper development. Аnnu Rev Immunol 2000; 18: 451–94. DOI: 10.1146/annurev.immunol.18.1.451
20. Freidlin I.S. Reguliatornye T-kletki: proiskhozhdenie i funktsii. Med. immunologiia. 2005; 7 (4): 347–54. [in Russian]
21. Ouyang W, Lohning M, Gao Z et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12: 27–37. DOI: 10.1016/s1074-7613(00)80156-9
22. Lee H-J, Takemoto N, Kurata H et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000; 192: 105–15. DOI: 10.1084/jem.192.1.105
23. Kubo M, Ransom J, Webb D et al. T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6. The EMBO J 1997; 16: 4007–20. DOI: 10.1093/emboj/16.13.4007
24. Huang H, Paul WE. Impaired interleukin 4 signaling in T helper type 1 cells. J of Exp Med 1998; 187: 1305–313. DOI: 10.1084/jem.187.8.1305
25. Hsu SC, Miller SA, Wang Y, Hung MC. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res 2009; 1: 249–58. DOI: 10.1158/0008-5472.can-10-2384
26. Bai J, Guo XG, Bai XP. Epidermal growth factor receptor-related DNA repair and radiation-resistance regulatory mechanisms: a mini-review. Asia Pac J Cancer Prevent 2012; 13: 4879–81. DOI: 10.7314/apjcp.2012.13.10.4879
27. Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2007; 83: 781–91. DOI: 10.1080/09553000701769970
28. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–81. DOI: 10.1038/nrc2088
29. Albitar L, Pickett G, Morgan M et al. EGFR isoforms and gene regulation in human endometrial cancer cells. Molecular Cancer 2010; 9: 166. DOI: 10.1186/1476-4598-9-166
30. Guillaudeau A, Durand K, Rabinovitch-Chable H et al. Adult diffuse gliomas produce mRNA transcripts encoding EGFR isoforms lacking a tyrosine kinase domain. Int J Oncol 2012; 40: 1142–52. DOI: 10.3892/ijo.2011.1287
31. Arau JA, Ribeiro R, Azevedo I et al. Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer – a review of the literature. Oncologist 2007; 12: 201–10. DOI: 10.1634/theoncologist.12-2-201
32. Yang PW, Hsieh MS, Huang YC et al. Genetic variants of EGF and VEGF predict prognosis of patients with advanced esophageal squamous cell carcinoma. PLoS One 2014; 9 (6): e100326. DOI: 10.1371/journal.pone.0100326
33. Zhang J, Zhan Z, Wu J et al. Association among polymorphisms in EGFR gene exons, lifestyle and risk of gastric cancer with gender differences in Chinese Han subjects. PLoS One 2013; 8 (3): e59254. DOI: 10.1371/journal.pone.0059254
34. Gerger A, El-Khoueiry A, Zhang W et al. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 2011; 17 (17): 5783–92. DOI: 10.1158/1078-0432.CCR-11-1115
35. Li C, Wei R, Jones-Hall YL et al. Epidermal growth factor receptor (EGFR) pathway genes and interstitial lung disease: an association study. Sci Reports 2014; 4: 4893. DOI: 10.1038/srep04893
36. Huang CM, Chen HH, Chen DC et al. Rheumatoid arthritis is associated with rs17337023 polymorphism and increased serum level of the EGFR protein. PLoS One 2017; 12 (7): e0180604. DOI: 10.1371/journal.pone.0180604
37. Yoshikawa T, Kanazawa H. Integrated effect of EGFR and PAR-1 signaling crosstalk on airway hyperresponsiveness. Int J Mol Med 2012; 30 (1): 41–8. DOI: 10.3892/ijmm.2012.981
38. Le Cras TD, Acciani TH, Mushaben EM et al. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am J Physiol Lung Cell Mol Physiolog 2011; 300 (3): 414–21. DOI: 10.1152/ajplung.00346.2010
39. Hilton DJ. Negative regulators of cytokine signal transduction. Cell Mol Life Sci 1999; 55: 1568–77. DOI: 10.1007/s000180050396
40. Naka T, Fujimoto M, Kishimoto T. Negative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem Sci 1999; 24: 394–8. DOI: 10.1016/s0968-0004(99)01454-1
41. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Аnnu Rev Immunol 2000; 18: 143–64. DOI: 10.1146/annurev.immunol.18.1.143
42. Feng ZP, Chandrashekaran IR, Low A et al. The N-terminal domains of SOCS proteins: a conserved region in the disordered N-termini of SOCS4 and 5. Proteins 2012; 80 (3): 946–57. DOI: 10.1002/prot.23252
43. Saltykova IV, Ogorodova LM, Bragina EY et al. Opisthorchis felineus liver fluke invasion is an environmental factor modifying genetic risk of atopic bronchial asthma. Acta Tropica 2014; 139: 53–6. DOI: 10.1016/j.actatropica.2014.07.004
44. Linossi EM, Chandrashekaran IR, Kolesnik TB et al. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 2013; 8 (8): e70536. DOI: 10.1371/journal.pone.0070536
45. Zhuang G, Wu X, Jiang Z et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. The EMBO J 2012; 31 (17): 3513–23. DOI: 10.1038/emboj.2012.183
46. Yoon S, Yi YS, Kim SS et al. SOCS5 and SOCS6 have similar expression patterns in normal and cancer tissues. Tumour Biol 2012; 33 (1): 215–21. DOI: 10.1007/s13277-011-0264-4
47. Ozaki A, Seki Y, Fukushima A, Kubo M. The control of allergic conjunctivitis by suppressor of cytokine signaling (SOCS)3 and SOCS5 in a murine model. J Immunol 2005; 175 (8): 5489–97. DOI: 10.4049/jimmunol.175.8.5489
48. Toghi M, Taheri M, Arsang-Jang S et al. SOCS gene family expression profile in the blood of multiple sclerosis patients. J Neurol Sci 2017; 375: 481–5. DOI: 10.1016/j.jns.2017.02.015
49. Kario E, Marmor MD, Adamsky K et al. Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chemistry 2005; 280 (8): 7038–48. DOI: 10.1074/jbc.M408575200
2. Saltykova I.V., Freidin M.B., Bragina E.Iu. i dr. Assotsiatsiia polimorfizma rs6737848 gena SOCS5 s bronkhial'noi astmoi. Vestn. Ros. akademii meditsinskikh nauk. 2013; 7: 53–6. DOI: 10.15690/vramn.v68i7.713 [in Russian]
3. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2016 [Accessed 2016]. Available on [www.ginasthma.org].
4. Chuchalin A.G. Bronkhial'naia astma. M.: Meditsina, 2003. [in Russian]
5. Chuchalin A.G., Il'kovich M.M. Spravochnik po pul'monologii. M.: GEOTAR-Media, 2014. [in Russian]
6. Freidin M.B., Ogorodova L.M., Tsoi A.N., Berdnikova N.G. Genetikabronkhial'noi astmy. Genetika bronkholegochnykh zabolevanii. M.: Atmosfera, 2010; s. 78–104. [in Russian].
7. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nature Reviews Immunology 2008; 8 (3): 169–82. DOI: 10.1038/nri2257
8. Balabolkin I.I., Bulgakova V.A. Geneticheskie aspekty formirovaniia effektivnosti i bezopasnosti farmakoterapii atopicheskoi bronkhial'noi astmy u detei. Farmateka. 2016; 14: 14–9. [in Russian]
9. Razvodovskaia A.V., Cherkashina I.I., Nikulina S.Iu. i dr. Izuchenie assotsiatsii odnonukleotidnogo polimorfizma rsl800470 gena transformiruiushchego faktora rosta beta 1 (TGF-b1) s riskom razvitiia bronkhial'noi astmy. Sib. med. obozrenie. 2014; 2: 17–22. DOI: 10.20333/25000136-2014-2-17-22. [in Russian]
10. Cherkashina I.I., Nikulina S.Iu., Maksimov V.N. i dr. Osobennosti polimorfizma gena khemokinovogo retseptora CCR2 u bol'nykh bronkhial'noi astmoi i khronicheskoi obstruktivnoi bolezn'iu legkikh. Sib. med. obozrenie. 2013; 2: 19–23. [in Russian]
11. Li Y, Wu B, Xiong H et al. Polymorphisms of STAT-6, STAT-4 and IFN-gamma genes and the risk of asthma in Chinese population. Respir Med 2007; 101 (9): 1977–81. DOI: 10.1016/j.rmed.2007.04.006
12. Hsieh YY, Wan L, Chang CC et al. STAT2*C related genotypes and allele but not TLR4 and CD40 gene polymorphisms are associated with higher susceptibility for asthma. Int J Biol Sci 2009; 5 (1): 74–81. DOI: 10.7150/ijbs.5.74
13. Ege MJ, Mayer M, Schwaiger K et al. Environmental bacteria and childhood asthma. Allergy 2012; 67 (12): 1565–71. DOI: 10.1111/all.12028
14. Hilty M, Burke C, Pedro H et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5 (1): е8578. DOI: 10.1371/journal.pone.0008578
15. Seki Y, Hayashi K, Matsumoto A et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proceedings of the National Academy of Sciences of the USA. 2002; 99 (20): 13003–8. DOI: 10.1073/pnas.202477099
16. O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998; 8 (3): 275–83. DOI: 10.1016/s1074-7613(00)80533-6
17. Khaitov R.M., Pinegin B.V., Iarilin A.A. Rukovodstvo po klinicheskoi immunologii. Diagnostika zabolevanii immunnoi sistemy: Rukovodstvo dlia vrachei. M.: GEOTAR-Media, 2009. [in Russian]
18. Athanassakis I, Vassiliadis S. T regulatory cells: are we re-discovering T suppressors. Immunology Letters 2002; 84: 179–83. DOI: 10.1016/s0165-2478(02)00182-7
19. Murphy KM, Ouyang W, Farrar JD et al. Signaling and transcription in T helper development. Аnnu Rev Immunol 2000; 18: 451–94. DOI: 10.1146/annurev.immunol.18.1.451
20. Freidlin I.S. Reguliatornye T-kletki: proiskhozhdenie i funktsii. Med. immunologiia. 2005; 7 (4): 347–54. [in Russian]
21. Ouyang W, Lohning M, Gao Z et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12: 27–37. DOI: 10.1016/s1074-7613(00)80156-9
22. Lee H-J, Takemoto N, Kurata H et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000; 192: 105–15. DOI: 10.1084/jem.192.1.105
23. Kubo M, Ransom J, Webb D et al. T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6. The EMBO J 1997; 16: 4007–20. DOI: 10.1093/emboj/16.13.4007
24. Huang H, Paul WE. Impaired interleukin 4 signaling in T helper type 1 cells. J of Exp Med 1998; 187: 1305–313. DOI: 10.1084/jem.187.8.1305
25. Hsu SC, Miller SA, Wang Y, Hung MC. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res 2009; 1: 249–58. DOI: 10.1158/0008-5472.can-10-2384
26. Bai J, Guo XG, Bai XP. Epidermal growth factor receptor-related DNA repair and radiation-resistance regulatory mechanisms: a mini-review. Asia Pac J Cancer Prevent 2012; 13: 4879–81. DOI: 10.7314/apjcp.2012.13.10.4879
27. Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2007; 83: 781–91. DOI: 10.1080/09553000701769970
28. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–81. DOI: 10.1038/nrc2088
29. Albitar L, Pickett G, Morgan M et al. EGFR isoforms and gene regulation in human endometrial cancer cells. Molecular Cancer 2010; 9: 166. DOI: 10.1186/1476-4598-9-166
30. Guillaudeau A, Durand K, Rabinovitch-Chable H et al. Adult diffuse gliomas produce mRNA transcripts encoding EGFR isoforms lacking a tyrosine kinase domain. Int J Oncol 2012; 40: 1142–52. DOI: 10.3892/ijo.2011.1287
31. Arau JA, Ribeiro R, Azevedo I et al. Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer – a review of the literature. Oncologist 2007; 12: 201–10. DOI: 10.1634/theoncologist.12-2-201
32. Yang PW, Hsieh MS, Huang YC et al. Genetic variants of EGF and VEGF predict prognosis of patients with advanced esophageal squamous cell carcinoma. PLoS One 2014; 9 (6): e100326. DOI: 10.1371/journal.pone.0100326
33. Zhang J, Zhan Z, Wu J et al. Association among polymorphisms in EGFR gene exons, lifestyle and risk of gastric cancer with gender differences in Chinese Han subjects. PLoS One 2013; 8 (3): e59254. DOI: 10.1371/journal.pone.0059254
34. Gerger A, El-Khoueiry A, Zhang W et al. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 2011; 17 (17): 5783–92. DOI: 10.1158/1078-0432.CCR-11-1115
35. Li C, Wei R, Jones-Hall YL et al. Epidermal growth factor receptor (EGFR) pathway genes and interstitial lung disease: an association study. Sci Reports 2014; 4: 4893. DOI: 10.1038/srep04893
36. Huang CM, Chen HH, Chen DC et al. Rheumatoid arthritis is associated with rs17337023 polymorphism and increased serum level of the EGFR protein. PLoS One 2017; 12 (7): e0180604. DOI: 10.1371/journal.pone.0180604
37. Yoshikawa T, Kanazawa H. Integrated effect of EGFR and PAR-1 signaling crosstalk on airway hyperresponsiveness. Int J Mol Med 2012; 30 (1): 41–8. DOI: 10.3892/ijmm.2012.981
38. Le Cras TD, Acciani TH, Mushaben EM et al. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am J Physiol Lung Cell Mol Physiolog 2011; 300 (3): 414–21. DOI: 10.1152/ajplung.00346.2010
39. Hilton DJ. Negative regulators of cytokine signal transduction. Cell Mol Life Sci 1999; 55: 1568–77. DOI: 10.1007/s000180050396
40. Naka T, Fujimoto M, Kishimoto T. Negative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem Sci 1999; 24: 394–8. DOI: 10.1016/s0968-0004(99)01454-1
41. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Аnnu Rev Immunol 2000; 18: 143–64. DOI: 10.1146/annurev.immunol.18.1.143
42. Feng ZP, Chandrashekaran IR, Low A et al. The N-terminal domains of SOCS proteins: a conserved region in the disordered N-termini of SOCS4 and 5. Proteins 2012; 80 (3): 946–57. DOI: 10.1002/prot.23252
43. Saltykova IV, Ogorodova LM, Bragina EY et al. Opisthorchis felineus liver fluke invasion is an environmental factor modifying genetic risk of atopic bronchial asthma. Acta Tropica 2014; 139: 53–6. DOI: 10.1016/j.actatropica.2014.07.004
44. Linossi EM, Chandrashekaran IR, Kolesnik TB et al. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 2013; 8 (8): e70536. DOI: 10.1371/journal.pone.0070536
45. Zhuang G, Wu X, Jiang Z et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. The EMBO J 2012; 31 (17): 3513–23. DOI: 10.1038/emboj.2012.183
46. Yoon S, Yi YS, Kim SS et al. SOCS5 and SOCS6 have similar expression patterns in normal and cancer tissues. Tumour Biol 2012; 33 (1): 215–21. DOI: 10.1007/s13277-011-0264-4
47. Ozaki A, Seki Y, Fukushima A, Kubo M. The control of allergic conjunctivitis by suppressor of cytokine signaling (SOCS)3 and SOCS5 in a murine model. J Immunol 2005; 175 (8): 5489–97. DOI: 10.4049/jimmunol.175.8.5489
48. Toghi M, Taheri M, Arsang-Jang S et al. SOCS gene family expression profile in the blood of multiple sclerosis patients. J Neurol Sci 2017; 375: 481–5. DOI: 10.1016/j.jns.2017.02.015
49. Kario E, Marmor MD, Adamsky K et al. Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chemistry 2005; 280 (8): 7038–48. DOI: 10.1074/jbc.M408575200
Авторы
А.Б.Аверьянов*, И.И.Черкашина, С.Ю.Никулина, В.А.Шестовицкий
ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф.Войно-Ясенецкого» Минздрава России. 660022, Россия, Красноярск, ул. Партизана Железняка, д. 1
*Averyanov_a007@mail.ru
Prof. V.F.Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of the Russian Federation. 660022, Russian Federation, Krasnoyarsk, ul. Partizana Zhelezniaka, d. 1
*Averyanov_a007@mail.ru
ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф.Войно-Ясенецкого» Минздрава России. 660022, Россия, Красноярск, ул. Партизана Железняка, д. 1
*Averyanov_a007@mail.ru
________________________________________________
Prof. V.F.Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of the Russian Federation. 660022, Russian Federation, Krasnoyarsk, ul. Partizana Zhelezniaka, d. 1
*Averyanov_a007@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
