Современные подходы и возможности оценки минеральной плотности костной ткани методом количественной компьютерной томографии (обзор литературы)
Современные подходы и возможности оценки минеральной плотности костной ткани методом количественной компьютерной томографии (обзор литературы)
Мельников А.А., Дьяченко В.В., Шубин И.В., Никитин А.Э., Созыкин А.В., Аверин Е.Е. Современные подходы и возможности оценки минеральной плотности костной ткани методом количественной компьютерной томографии (обзор литературы). Consilium Medicum. 2021; 23 (4): 372–381.
DOI: 10.26442/20751753.2021.4.200643
________________________________________________
Melnikov AA, Diachenko VV, Shubin IV, Nikitin AE, Sozykin AV, Averin EE. Modern approaches and possibilities for assessing bone mineral density by quantitative computed tomography (literature review) . Consilium Medicum. 2021; 23 (4): 372–381. DOI: 10.26442/20751753.2021.4.200643
Современные подходы и возможности оценки минеральной плотности костной ткани методом количественной компьютерной томографии (обзор литературы)
Мельников А.А., Дьяченко В.В., Шубин И.В., Никитин А.Э., Созыкин А.В., Аверин Е.Е. Современные подходы и возможности оценки минеральной плотности костной ткани методом количественной компьютерной томографии (обзор литературы). Consilium Medicum. 2021; 23 (4): 372–381.
DOI: 10.26442/20751753.2021.4.200643
________________________________________________
Melnikov AA, Diachenko VV, Shubin IV, Nikitin AE, Sozykin AV, Averin EE. Modern approaches and possibilities for assessing bone mineral density by quantitative computed tomography (literature review) . Consilium Medicum. 2021; 23 (4): 372–381. DOI: 10.26442/20751753.2021.4.200643
В обзоре освещены данные литературы по фундаментальным вопросам ремоделирования костной ткани и прикладного использования методов медицинской визуализации в профилактике клинически значимых последствий остеопороза. Обсуждаются роль и перспективы использования метода количественной компьютерной томографии и его модификаций в диагностике остеопороза и остеопенического синдрома. В сравнительном аспекте рассматриваются преимущества количественной компьютерной томографии перед широко используемыми медицинскими технологиями оценки минеральной плотности кости (моно- и двухэнергетической рентгеновской абсорбциометрией, моно- и двухэнергетической изотопной абсорбциометрией).
Ключевые слова: количественная компьютерная томография, остеопороз, остеопения, моно- и двухэнергетическая рентгеновская абсорбциометрия, моно- и двухэнергетическая изотопная абсорбциометрия
________________________________________________
The review provides the literature data on the basal issues of bone remodeling and the applied use of medical imaging techniques for the prevention of clinically significant consequences of osteoporosis. The article discusses the role and prospects of using the method of quantitative computed tomography and its modifications for the diagnosis of osteoporosis and osteopenic syndrome. It considers the advantages of quantitative computed tomography over widely used medical techniques for assessing bone mineral density (mono- and dual-energy X-ray absorptiometry, mono- and dual-energy isotope absorptiometry).
Keywords: quantitative computed tomography, osteoporosis, osteopenia, mono- and dual-energy X-ray absorptiometry, mono- and dual-energy isotope absorptiometry
1. Герштейн Е.С., Тимофеев Ю.С., Зуев А.А., Кушлинский Н.Е. Лиганд-рецепторная система RANK/RANKL/OPG и ее роль при первичных новообразованиях костей (анализ литературы и собственные результаты). Успехи молекулярной онкологии. 2015;2(3):51-9 [Gershtein ES, Timofeev IuS, Zuev AA, Kushlinskii NE. Ligand-retseptornaia sistema RANK/RANKL/OPG i ee rol’ pri pervichnykh novoobrazovaniiakh kostei (analiz literatury i sobstvennye rezul’taty). Uspekhi molekuliarnoi onkologii. 2015;2(3):51-9 (in Russian)].
2. Добровольская О.В. Осложненный остеопороз: минеральная плотность костной ткани различных отделов скелета, качество жизни, приверженность терапии и затраты на лечение. Автореф. дис. … канд. мед. наук. М., 2016 [Dobrovol’skaia OV. Oslozhnennyi osteoporoz: mineral’naia plotnost’ kostnoi tkani razlichnykh otdelov skeleta, kachestvo zhizni, priverzhennost’ terapii i zatraty na lechenie. Avtoref. dis. … kand. med. nauk. Moscow, 2016 (in Russian)].
3. Дьячкова Г.В., Реутов А.И., Эйдлина Е.М. Возможности и преимущества количественной компьютерной томографии в выявлении остеопороза позвоночника. Радиология – практика. 2006;4:32-6 [D’iachkova GV, Reutov AI, Eidlina EM. Vozmozhnosti i preimushchestva kolichestvennoi komp’iuternoi tomografii v vyiavlenii osteoporoza pozvonochnika. Radiologiia – praktika. 2006;4:32-6 (in Russian)].
4. Евстигнеева Л.П., Солодовников А.Г., Ершова О.Б., и др. Остеопороз. Диагностика, профилактика и лечение. Клинические рекомендации. 2-е изд., перераб. и доп. М., 2010 [Evstigneeva LP, Solodovnikov AG, Ershova OB, et al. Osteoporosis. Diagnostics, prevention and treatment. Clinical guidelines. 2nd Ed. Moscow, 2010 (in Russian)].
5. Корж Н.А., Яковенчук Н.Н., Дедух Н.В. Остеопороз и остеоартроз: патогенетически взаимосвязанные заболевания? (обзор литературы). Ортопедия, травматология и протезирование. 2013;593(4):102-10
[Korzh NA, Iakovenchuk NN, Dedukh NV. Osteoporoz i osteoartroz: patogeneticheski vzaimosviazannye zabolevaniia? (obzor literatury). Ortopediia, travmatologiia i protezirovanie. 2013;593(4):102-10 (in Russian)].
6. Смолев Д.М. Особенности денситометрической диагностики остеопороза у пациентов пожилого возраста. Автореф. дис. … канд. мед. наук. М., 2005 [Smolev D.M. Osobennosti densitometricheskoi diagnostiki osteoporoza u patsientov pozhilogo vozrasta. Avtoref. dis. … kand. med. nauk. Moscow, 2005 (in Russian)].
7. Шармазанова Е.П., Мягков С.А., Еремеева Н.Д., и др. Магнитно-резонансно томографическая семиотика острых остеопоротических компрессионных переломов позвоночника. Ортопедия, травматология, протезирование. 2012;4:62-9 [Sharmazanova EP, Miagkov SA, Eremeeva ND, et al. Magnitno-rezonansno tomograficheskaia semiotika ostrykh osteoporoticheskikh kompressionnykh perelomov pozvonochnika. Ortopediia, travmatologiia, protezirovanie. 2012;4:62-9 (in Russian)].
8. Adler R, El-Hajj FG, Bauer D, et al. Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment: Report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2016;31(1):16-35. DOI:10.1002/jbmr.2708
9. Bansal SC, Khandelwal N, Rai DV. Comparison between the QCT and the DEXA scanners in the evaluation of BMD in the lumbar spine. J Clin Diagnost Res. 2011;5(4):694-9.
10. Barbosa AP, Mascarenhas MR. Iatrogenic osteoporosis. Int J Endocrinol. 2016;11(8.72):61–6.
11. Bauer JS, Virmani S, Mueller DK. Quantitative CT to assess BMD as a diagnostic tool for osteoporosis and related fractures. Medica Mundi. 2010;54(2):31-7.
12. Bonnick SL, Lewis LA. Bone densitometry for technologists. New Jersey: Humana press Totowa, 2006.
13. Cameron JR, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science. 1963;142:230-2.
14. Camacho PM, Petak SM, Binkley N, Clarke B. American association of clinical endocrinologists and American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis – 2016. Endocrine Pract. 2016;22(Suppl. 4):1-42.
15. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980:4:493-500.
16. Cushing H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp. 1932;50:137-95.
17. Dall’Ara E, Luisier B, Schmidt R, et al. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 2013;52(1):27-38.
18. Lesnyak O, Ershova O, Gladkova E, Belova K. Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos. 2012;7(1-2):67-73. DOI:10.1007/s11657-012-0082-3
19. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Min Res. 1993;8:1137-48.
20. Giambini H, Dragomir-Daescu D, Huddleston PM, et al. The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation. Biomech Eng. 2015;137(11):114502.
21. Gurlek A, Bayraktar MA, Auriyrek M. Inappropriate reference range for peak bone mineral density in DEXA: Implications for the interpretation of T-score. Osteoporos Int. 2000;11:809-13.
22. Guglielmi G, Grimston SK, Fischer KC, Pacifici R. Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology. 1994;192:845-50.
23. Hangartner TN. Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner. 1990;9:71-8.
24. Jabbar S, Drury J, Nordham JN, et al. Osteoprotegerin, RANKL and bone turnoval in postmenopausal osteoporosis. J Clin Pathol. 2011;64(4):354-7.
25. Kang Y, Engelke K, Fuchs C, Kalender WA. An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med imaging Graph. 2005;29:533-41.
26. Kanis J, Melton L, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 2009;9(8):1137-41.
27. Kazawa N. T2WI MRI and MRI-MDCT correlations of the osteoporotic vertebral compressive fractures. Eur J Radiol. 2012;81(7):1630-6.
28. Lesnyak OM, Benevolenskaya LI. Osteoporosis in Russian Federation: problems and perspectives. Rheumatol Sci Pract. 2010;4(1):14-8.
29. Li N, Li XM, Xu L, et al. Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. Int J Endocrinol. 2013;8:895474.
30. Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011;165(1):1-10.
31. Martin P, Verhas M, Als C, et al. Influence of patient’s weight on dual-photon absorptiometry and dual-energy X ray absorptiometry measurements of bone mineral density. Osteoporosis Int. 1993;3:198-203.
32. Maetani A, Itoh M, Nishihara K, et al. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows. J Vet Med Sci. 2016;78(7):1209-11.
33. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin Orth Rel Res. 1971;80:147-54.
34. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103-8.
35. Roos B. Dual photon absorptiometry in lumbar vertebrae: Theory and method. Acta Radiol Ther Phys. 1974;13:291.
36. Saville PD. A quantitative approach to simple radiographic diagnosis of osteoporosis: its application to the osteoporosis of rheumatoid arthritis. Arthritis Rheum. 1967;10:416-22.
37. Smith RW, Rizek J. Epidemiologic studies of osteoporosis in women of Puerto Rico and Southeastern Michigan with special reference to age, race, national origin and to related or associated findings. Clin Orthop. 1966;45:31-48.
38. Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg. 1970;52-A:457-67.
39. Sugimoto T. Anti-RANKL monoclonal antibody denosumab (AMG 162). Clin Calcium. 2011;21(1):46-51.
40. Yuh WТC, Zachar СK, Barlon TJ, et al. Vertebral comparession fractures: distruction between beniung and malignant causes with MR imaging. Radiol. 1989;172(1):215-18.1.
41. Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol. 2000;34:229-46.
________________________________________________
1. Gershtein ES, Timofeev IuS, Zuev AA, Kushlinskii NE. Ligand-retseptornaia sistema RANK/RANKL/OPG i ee rol’ pri pervichnykh novoobrazovaniiakh kostei (analiz literatury i sobstvennye rezul’taty). Uspekhi molekuliarnoi onkologii. 2015;2(3):51-9 (in Russian)
2. Dobrovol’skaia OV. Oslozhnennyi osteoporoz: mineral’naia plotnost’ kostnoi tkani razlichnykh otdelov skeleta, kachestvo zhizni, priverzhennost’ terapii i zatraty na lechenie. Avtoref. dis. … kand. med. nauk. Moscow, 2016 (in Russian)
3. D’iachkova GV, Reutov AI, Eidlina EM. Vozmozhnosti i preimushchestva kolichestvennoi komp’iuternoi tomografii v vyiavlenii osteoporoza pozvonochnika. Radiologiia – praktika. 2006;4:32-6 (in Russian).
4. Evstigneeva LP, Solodovnikov AG, Ershova OB, et al. Osteoporosis. Diagnostics, prevention and treatment. Clinical guidelines. 2nd Ed. Moscow, 2010 (in Russian)
5. Korzh NA, Iakovenchuk NN, Dedukh NV. Osteoporoz i osteoartroz: patogeneticheski vzaimosviazannye zabolevaniia? (obzor literatury). Ortopediia, travmatologiia i protezirovanie. 2013;593(4):102-10 (in Russian)
6. Smolev D.M. Osobennosti densitometricheskoi diagnostiki osteoporoza u patsientov pozhilogo vozrasta. Avtoref. dis. … kand. med. nauk. Moscow, 2005 (in Russian)
7. Sharmazanova EP, Miagkov SA, Eremeeva ND, et al. Magnitno-rezonansno tomograficheskaia semiotika ostrykh osteoporoticheskikh kompressionnykh perelomov pozvonochnika. Ortopediia, travmatologiia, protezirovanie. 2012;4:62-9 (in Russian)
8. Adler R, El-Hajj FG, Bauer D, et al. Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment: Report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2016;31(1):16-35. DOI:10.1002/jbmr.2708
9. Bansal SC, Khandelwal N, Rai DV. Comparison between the QCT and the DEXA scanners in the evaluation of BMD in the lumbar spine. J Clin Diagnost Res. 2011;5(4):694-9.
10. Barbosa AP, Mascarenhas MR. Iatrogenic osteoporosis. Int J Endocrinol. 2016;11(8.72):61–6.
11. Bauer JS, Virmani S, Mueller DK. Quantitative CT to assess BMD as a diagnostic tool for osteoporosis and related fractures. Medica Mundi. 2010;54(2):31-7.
12. Bonnick SL, Lewis LA. Bone densitometry for technologists. New Jersey: Humana press Totowa, 2006.
13. Cameron JR, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science. 1963;142:230-2.
14. Camacho PM, Petak SM, Binkley N, Clarke B. American association of clinical endocrinologists and American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis – 2016. Endocrine Pract. 2016;22(Suppl. 4):1-42.
15. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980:4:493-500.
16. Cushing H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp. 1932;50:137-95.
17. Dall’Ara E, Luisier B, Schmidt R, et al. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 2013;52(1):27-38.
18. Lesnyak O, Ershova O, Gladkova E, Belova K. Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos. 2012;7(1-2):67-73. DOI:10.1007/s11657-012-0082-3
19. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Min Res. 1993;8:1137-48.
20. Giambini H, Dragomir-Daescu D, Huddleston PM, et al. The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation. Biomech Eng. 2015;137(11):114502.
21. Gurlek A, Bayraktar MA, Auriyrek M. Inappropriate reference range for peak bone mineral density in DEXA: Implications for the interpretation of T-score. Osteoporos Int. 2000;11:809-13.
22. Guglielmi G, Grimston SK, Fischer KC, Pacifici R. Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology. 1994;192:845-50.
23. Hangartner TN. Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner. 1990;9:71-8.
24. Jabbar S, Drury J, Nordham JN, et al. Osteoprotegerin, RANKL and bone turnoval in postmenopausal osteoporosis. J Clin Pathol. 2011;64(4):354-7.
25. Kang Y, Engelke K, Fuchs C, Kalender WA. An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med imaging Graph. 2005;29:533-41.
26. Kanis J, Melton L, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 2009;9(8):1137-41.
27. Kazawa N. T2WI MRI and MRI-MDCT correlations of the osteoporotic vertebral compressive fractures. Eur J Radiol. 2012;81(7):1630-6.
28. Lesnyak OM, Benevolenskaya LI. Osteoporosis in Russian Federation: problems and perspectives. Rheumatol Sci Pract. 2010;4(1):14-8.
29. Li N, Li XM, Xu L, et al. Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. Int J Endocrinol. 2013;8:895474.
30. Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011;165(1):1-10.
31. Martin P, Verhas M, Als C, et al. Influence of patient’s weight on dual-photon absorptiometry and dual-energy X ray absorptiometry measurements of bone mineral density. Osteoporosis Int. 1993;3:198-203.
32. Maetani A, Itoh M, Nishihara K, et al. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows. J Vet Med Sci. 2016;78(7):1209-11.
33. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin Orth Rel Res. 1971;80:147-54.
34. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103-8.
35. Roos B. Dual photon absorptiometry in lumbar vertebrae: Theory and method. Acta Radiol Ther Phys. 1974;13:291.
36. Saville PD. A quantitative approach to simple radiographic diagnosis of osteoporosis: its application to the osteoporosis of rheumatoid arthritis. Arthritis Rheum. 1967;10:416-22.
37. Smith RW, Rizek J. Epidemiologic studies of osteoporosis in women of Puerto Rico and Southeastern Michigan with special reference to age, race, national origin and to related or associated findings. Clin Orthop. 1966;45:31-48.
38. Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg. 1970;52-A:457-67.
39. Sugimoto T. Anti-RANKL monoclonal antibody denosumab (AMG 162). Clin Calcium. 2011;21(1):46-51.
40. Yuh WТC, Zachar СK, Barlon TJ, et al. Vertebral comparession fractures: distruction between beniung and malignant causes with MR imaging. Radiol. 1989;172(1):215-18.1.
41. Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol. 2000;34:229-46.