Дисбиоз кишечной микробиоты и сахарный диабет 2-го типа, современные стратегии коррекции
Дисбиоз кишечной микробиоты и сахарный диабет 2-го типа, современные стратегии коррекции
Исаева Р.А., Алиметова З.Р., Исаева Г.Ш. Дисбиоз кишечной микробиоты и сахарный диабет 2-го типа, современные стратегии коррекции. Consilium Medicum. 2024;26(4):257–262.
DOI: 10.26442/20751753.2024.4.202736
Isaeva RA, Alimetova ZR, Isaeva GSh. Dysbiosis of the intestinal microbiota and type 2 diabetes mellitus, modern correction strategies: A review. Consilium Medicum. 2024;26(4):257–262. DOI: 10.26442/20751753.2024.4.202736
Дисбиоз кишечной микробиоты и сахарный диабет 2-го типа, современные стратегии коррекции
Исаева Р.А., Алиметова З.Р., Исаева Г.Ш. Дисбиоз кишечной микробиоты и сахарный диабет 2-го типа, современные стратегии коррекции. Consilium Medicum. 2024;26(4):257–262.
DOI: 10.26442/20751753.2024.4.202736
Isaeva RA, Alimetova ZR, Isaeva GSh. Dysbiosis of the intestinal microbiota and type 2 diabetes mellitus, modern correction strategies: A review. Consilium Medicum. 2024;26(4):257–262. DOI: 10.26442/20751753.2024.4.202736
Сахарный диабет (СД) в настоящее время принял эпидемический характер распространения и приобрел черты пандемического заболевания. Особое значение в течение последних десятилетий уделяется значению кишечного микробиома (КМ) в патогенезе СД. Целью обзора стало изучение корреляции между кишечной микробиотой и СД 2-го типа (СД 2), оценка перспектив профилактики и лечения СД 2 путем коррекции дисбиотических нарушений. Исследования метагеномики микробиоты кишечника показали наличие корреляции между уровнем глюкозы в плазме и изменениями в составе микробиоты, а именно со снижением представителей типа Firmicutes и повышением Proteobacteria, изменением соотношения Bacteroidetes к Firmicutes. У пациентов с СД 2 снижается популяция бактерий, продуцирующих бутират, на фоне роста условно-патогенных оппортунистов, бактерий, разлагающих муцин, и сульфитредуцирующих бактерий. Наличие связи между составом КМ и СД 2 подтверждено в ходе экспериментальных исследований на животных моделях и на группах добровольцев. Новые подходы к изучению риска развития СД 2 и дисбиотических нарушений могут быть связаны с использованием искусственного интеллекта. Перспективным направлением по применению пробиотических микроорганизмов для коррекции метаболических нарушений СД 2 является применение как классических пробиотиков – представителей родов Lactobacillus и Bifidobacterium, так и новых пробиотиков из состава нормобиоты кишечника Akkermansia muciniphila, Faecalibacterium prausnitzii и генетически модифицированных микроорганизмов Lactococcus lactis (LL-pUBGLP-1). Одним из новых приемов по коррекции дисбиотических нарушений при СД 2 является трансплантация фекальной микробиоты. Кишечная микробиота может быть использована не только в качестве диагностического биомаркера СД 2, но и в качестве потенциальной мишени для разработки новых терапевтических подходов. Использование пробиотической терапии, а именно пребиотиков, пробиотиков, постбиотиков и фармабиотиков, которые могут оказывать лечебный эффект путем воздействия на патогенетические механизмы при СД 2, требует проведения дальнейших многоцентровых исследований с использованием мультиомных технологий.
Ключевые слова: сахарный диабет 2-го типа, кишечная микробиота, метагеномика, фекальная трансплантация, пробиотическая терапия
________________________________________________
Diabetes mellitus has now assumed an epidemic character and acquired the characteristics of a pandemic disease. In recent decades, special attention has been paid to the importance of the intestinal microbiome in the pathogenesis of diabetes. The purpose of the review was to study the correlation between the intestinal microbiota and type 2 diabetes mellitus (DM 2), to assess the prospects for the prevention and treatment of DM 2 by correcting dysbiotic disorders. Studies of the intestinal microbiota have shown a correlation between plasma glucose levels and changes in the composition of the microbiota, namely with a decrease in representatives of the Firmicutes type and an increase in Proteobacteria, a change in the ratio of Bacteroidetes to Firmicutes. In patients with DM 2, the population of butyrate-producing bacteria decreases against the background of the growth of opportunistic opportunists, mucin-decomposing bacteria and sulfite-reducing bacteria. The presence of a link between the composition of intestinal microbiota and DM 2 was confirmed during experimental studies on animal models and on groups of volunteers. New approaches to studying the risk of developing DM 2 and dysbiotic disorders may be associated with the use of artificial intelligence. A promising direction for the use of probiotic microorganisms for the correction of metabolic disorders of DM 2 is the use of both classical probiotics – representatives of the genera Lactobacillus and Bifidobacterium, as well as new probiotics from the intestinal normobiota Akkermansia muciniphila, Faecalibacterium prausnitzii and genetically modified microorganisms Lactococcus lactis (LL-pUBGLP-1). One of the new techniques for correcting dysbiotic disorders in DM 2 is fecal microbiota transplantation. The intestinal microbiota can be used not only as a diagnostic biomarker of DM 2, but also as a potential target for the development of new therapeutic approaches. The use of prebiotics, probiotics, postbiotics and pharmacobiotics, which can have a therapeutic effect by influencing the pathogenetic mechanisms in DM 2, requires further multicenter studies using multiomic technologies.
1. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.
2. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.
3. Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа. Терапевтический архив. 2020;92(10):97-104 [Demidova TY, Lobanova KG, Oinotkinova OS. Gut microbiota is a factor of risk for obesity and type 2 diabetes. Terapevticheskii Arkhiv (Ter. Arkh.).
2020;92(10):97-104 (in Russian)]. DOI:10.26442/00403660.2020.10.000778
4. Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24.
5. Pingitore A, Chambers ES, Hill T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257-65.
6. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103.
7. Chen PC, Chien, YW, Yang SC. The alteration of gut microbiota in newly diagnosed type 2 diabetic patients. Nutrition. 2019:63-64:51-6.
8. Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019;569(7758):663-71.
9. Chávez-Carbajal A, Pizano-Zárate ML, Hernández-Quiroz F, et al. Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms. 2020;8(1):94.
10. Allin KH, Tremaroli V, Caesar R, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810-20.
11. Zhong H, Ren H, Lu Y, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine. 2019;47:373-83.
12. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718-23.
13. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31.
14. Peng W, Huang J, Yang J, et al. Integrated 16s rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-Obese Type 2 Diabetic Goto-Kakizaki Rats. Front Microbiol. 2020;10:3141.
15. Yu F, Han W, Zhan G, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice. Aging (Albany NY).
2019;11(22):10454-67.
16. Yu F, Han W, Zhan G, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice. Aging (Albany NY).
2019;11(10):3262-79.
17. Yang R, Jia Q, Mehmood S, et al. Genistein Ameliorates Inflammation and Insulin Resistance Through Mediation of Gut Microbiota Composition in Type 2 Diabetic Mice. Eur J Nutr.2021;60(4):2155-68.
18. Kieler IN, Osto M, Hugentobler L, et al. Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Sci Rep. 2019;9(1):4822.
19. Okazaki F, Zang L, Nakayama H, et al. Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Sci Rep. 2019;9(1):867.
20. Hill JH, Franzosa EA, Huttenhower C, et al. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. Elife. 2016:5:e20145.
21. Zhang J, Ni Y, Qian L, et al. Decreased Abundance of Akkermansia muciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. Adv Sci (Weinh). 2021;8(16):e2100536.
22. Gu C, Yang Y, Xiang H, et al. Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget. 2016;7(31):48941-52.
23. Zhang Y, Wu T, Li W, et al. Lactobacillus casei LC89 exerts antidiabetic effects through regulating hepatic glucagon response and gut microbiota in type 2 diabetic mice. Food Funct. 2021;12(18):8288-99.
24. Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600-5.
25. Craciun CI, Neag MA, Catinean A, et al. The relationships between gut microbiota and diabetes mellitus, and treatments for diabetes mellitus. Biomedicines. 2022;10(2):308.
26. Gou W, Ling CW, He Y, et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care. 2021;44(2):358-66.
27. Ternak G, Berenyi K, Kun S, et al. Inverse association between use of broad spectrum penicillin with beta-lactamase inhibitors and prevalence of type 1 diabetes mellitus in Europe. Sci Rep. 2021;11(1):16768.
28. Park SJ, Park YJ, Chang J, et al. Association between antibiotics use and diabetes incidence in a nationally representative retrospective cohort among Koreans. Sci Rep. 2021;11(1):21681.
29. Малаева Е.Г., Стома И.О. Возможности и перспективы модификации кишечного микробиома. Архив внутренней медицины. 2022;12(5):341-51 [Malaeva EG, Stoma IO. Possibilities and Prospects of Modification of the Intestinal Microbiome. The Russian Archives of Internal Medicine. 2022;12(5):341-51 (in Russian)].
30. Liang T, Wu L, Xi Y, et al. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis. Crit Rev Food Sci Nutr. 2021;61(10):1670-88.
31. Isaeva G, Isaeva R. Probiotics in the treatment of Helicobacter pylori infection: reality and perspective. Minerva Gastroenterol (Torino). 2022;68(3):277-88.
32. Исаева Г.Ш., Исаева Р.А. Механизмы межмикробных взаимодействий между пробиотическими микроорганизмами и Helicobacter pylori. КМАХ. 2023;3:225-38 [Isaeva GSh, Isaeva RA. Mechanisms of microbial interactions between probiotic microorganisms and Helicobacter pylori. КМАХ. 2023;3:225-38 (in Russian)].
33. Ferrario C, Taverniti V, Milani C, Fiore W, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144(11):1787-96. doi:10.3945/jn.114.197723. Erratum in: J Nutr. 2015;145(4):839.
34. Guida F, Turco F, Iannotta M, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun. 2018; 67:230-45. doi:10.1016/j.bbi.2017.09.001
35. Kim K, Lee S, Park SC, et al. Role of an unclassified Lachnospiraceae in the pathogenesis of type 2 diabetes: a longitudinal study of the urine microbiome and metabolites. Exp Mol Med. 2022;54(8):1125-32. doi:10.1038/s12276-022-00816-x
36. Compare D, Rocco A, Coccoli P, et al. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 2017;17(1):53. doi:10.1186/s12876-017-0605-x
37. Cremon C, Guglielmetti S, Gargari G, et al. Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: A pilot randomized clinical trial. United European Gastroenterol J. 2018;6(4):604-13. doi:10.1177/2050640617736478
38. Tao YW, Gu YL, Mao XQ, et al. Effects of probiotics on type II diabetes mellitus: a metaanalysis. J Transl Med. 2020;18(1):30.
39. Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S, et al. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. Daru. 2019;27(2):827-37.
40. Sun J, Buys NJ. Glucose- and glycaemic factorlowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr. 2016;115(7):1167-77.
41. Нургалеева Е.А., Линецкая О.И., Левина Я.В., и др. Перспективы фармакотерапии сахарного диабета с применением коррекции микробиоты желудочно-кишечного тракта. Вестник Волгоградского государственного медицинского университета. 2023;20(2):157-60 [Nurgaleeva EA, Linetskaya OI, Levina YV, et al. Prospects for pharmacotherapy of diabetes mellitus using modern approaches to the correction of the gut microbiota. Journal of Volgograd State Medical University. 2023;20(2):157-60 (in Russain)]. DOI:10.19163/1994-9480-2023-20-2-157-160
42. Zhang Z, Bai L, Guan M, et al. Potential probiotics Lactobacillus casei K11 combined with plant extracts reduce markers of type 2 diabetes mellitus in mice. J Appl Microbiol. 2021;131(4):1970-82.
43. Cheng D, Xie MZ. A review of a potential and promising probiotic candidate – Akkermansia muciniphila. J Appl Microbiol. 2021;130(6):1813-22.
44. Zhai Q, Feng S, Arjan N, et al. A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr. 2019;59(19):3227-36.
45. Шендеров Б.А., Юдин С.М., Загайнова А.В., и др. Akkermansia muciniphila – новый универсальный пробиотик на основе живых комменсальных бактерий кишечника человека и животных: действительность или легенда? Журнал микробиологии, эпидемиологии и иммунобиологии. 2019;96(4):105-15.
46. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426-36.
47. Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285-94.
48. Zhao S, Liu W, Wang J, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol. 2017;58(1):1-14.
49. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA.
2013;110(22):9066-71.
50. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107-113.
51. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096-103.
52. Wu H, Tremaroli V, Schmidt C, et al. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross- Sectional Study. Cell Metab. 2020;32(3):379-90.
53. Xu J, Liang R, Zhang W, et al. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes. 2020;12(3):224-36.
54. Agarwal P, Khatri P, Billack B, et al. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res. 2014;31(12):3404-14.
55. Antushevich H. Fecal microbiota transplantation in disease therapy. Clin Chim Acta. 2020;503:90-8.
56. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6. doi:10.1053/j.gastro.2012.06.031. Erratum in: Gastroenterology. 2013;144(1):250.
57. Kootte RS, Levin E, Salojärvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611-9.e6. doi:10.1016/j.cmet.2017.09.008
58. De Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut. 2020;69(3):502-12.
________________________________________________
1. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.
2. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.
3. Demidova TY, Lobanova KG, Oinotkinova OS. Gut microbiota is a factor of risk for obesity and type 2 diabetes. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(10):97-104 (in Russian). DOI:10.26442/00403660.2020.10.000778
4. Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24.
5. Pingitore A, Chambers ES, Hill T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257-65.
6. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103.
7. Chen PC, Chien, YW, Yang SC. The alteration of gut microbiota in newly diagnosed type 2 diabetic patients. Nutrition. 2019:63-64:51-6.
8. Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019;569(7758):663-71.
9. Chávez-Carbajal A, Pizano-Zárate ML, Hernández-Quiroz F, et al. Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms. 2020;8(1):94.
10. Allin KH, Tremaroli V, Caesar R, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810-20.
11. Zhong H, Ren H, Lu Y, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine. 2019;47:373-83.
12. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718-23.
13. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31.
14. Peng W, Huang J, Yang J, et al. Integrated 16s rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-Obese Type 2 Diabetic Goto-Kakizaki Rats. Front Microbiol. 2020;10:3141.
15. Yu F, Han W, Zhan G, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice. Aging (Albany NY).
2019;11(22):10454-67.
16. Yu F, Han W, Zhan G, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice. Aging (Albany NY).
2019;11(10):3262-79.
17. Yang R, Jia Q, Mehmood S, et al. Genistein Ameliorates Inflammation and Insulin Resistance Through Mediation of Gut Microbiota Composition in Type 2 Diabetic Mice. Eur J Nutr.2021;60(4):2155-68.
18. Kieler IN, Osto M, Hugentobler L, et al. Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Sci Rep. 2019;9(1):4822.
19. Okazaki F, Zang L, Nakayama H, et al. Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Sci Rep. 2019;9(1):867.
20. Hill JH, Franzosa EA, Huttenhower C, et al. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. Elife. 2016:5:e20145.
21. Zhang J, Ni Y, Qian L, et al. Decreased Abundance of Akkermansia muciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. Adv Sci (Weinh). 2021;8(16):e2100536.
22. Gu C, Yang Y, Xiang H, et al. Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget. 2016;7(31):48941-52.
23. Zhang Y, Wu T, Li W, et al. Lactobacillus casei LC89 exerts antidiabetic effects through regulating hepatic glucagon response and gut microbiota in type 2 diabetic mice. Food Funct. 2021;12(18):8288-99.
24. Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600-5.
25. Craciun CI, Neag MA, Catinean A, et al. The relationships between gut microbiota and diabetes mellitus, and treatments for diabetes mellitus. Biomedicines. 2022;10(2):308.
26. Gou W, Ling CW, He Y, et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care. 2021;44(2):358-66.
27. Ternak G, Berenyi K, Kun S, et al. Inverse association between use of broad spectrum penicillin with beta-lactamase inhibitors and prevalence of type 1 diabetes mellitus in Europe. Sci Rep. 2021;11(1):16768.
28. Park SJ, Park YJ, Chang J, et al. Association between antibiotics use and diabetes incidence in a nationally representative retrospective cohort among Koreans. Sci Rep. 2021;11(1):21681.
29. Malaeva EG, Stoma IO. Possibilities and Prospects of Modification of the Intestinal Microbiome. The Russian Archives of Internal Medicine. 2022;12(5):341-51 (in Russian).
30. Liang T, Wu L, Xi Y, et al. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis. Crit Rev Food Sci Nutr. 2021;61(10):1670-88.
31. Isaeva G, Isaeva R. Probiotics in the treatment of Helicobacter pylori infection: reality and perspective. Minerva Gastroenterol (Torino). 2022;68(3):277-88.
32. Isaeva GSh, Isaeva RA. Mechanisms of microbial interactions between probiotic microorganisms and Helicobacter pylori. КМАХ. 2023;3:225-38 (in Russian).
33. Ferrario C, Taverniti V, Milani C, Fiore W, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144(11):1787-96. doi:10.3945/jn.114.197723. Erratum in: J Nutr. 2015;145(4):839.
34. Guida F, Turco F, Iannotta M, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun. 2018; 67:230-45. doi:10.1016/j.bbi.2017.09.001
35. Kim K, Lee S, Park SC, et al. Role of an unclassified Lachnospiraceae in the pathogenesis of type 2 diabetes: a longitudinal study of the urine microbiome and metabolites. Exp Mol Med. 2022;54(8):1125-32. doi:10.1038/s12276-022-00816-x
36. Compare D, Rocco A, Coccoli P, et al. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 2017;17(1):53. doi:10.1186/s12876-017-0605-x
37. Cremon C, Guglielmetti S, Gargari G, et al. Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: A pilot randomized clinical trial. United European Gastroenterol J. 2018;6(4):604-13. doi:10.1177/2050640617736478
38. Tao YW, Gu YL, Mao XQ, et al. Effects of probiotics on type II diabetes mellitus: a metaanalysis. J Transl Med. 2020;18(1):30.
39. Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S, et al. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. Daru. 2019;27(2):827-37.
40. Sun J, Buys NJ. Glucose- and glycaemic factorlowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr. 2016;115(7):1167-77.
41. Nurgaleeva EA, Linetskaya OI, Levina YV, et al. Prospects for pharmacotherapy of diabetes mellitus using modern approaches to the correction of the gut microbiota. Journal of Volgograd State Medical University. 2023;20(2):157-60 (in Russain). DOI:10.19163/1994-9480-2023-20-2-157-160
42. Zhang Z, Bai L, Guan M, et al. Potential probiotics Lactobacillus casei K11 combined with plant extracts reduce markers of type 2 diabetes mellitus in mice. J Appl Microbiol. 2021;131(4):1970-82.
43. Cheng D, Xie MZ. A review of a potential and promising probiotic candidate – Akkermansia muciniphila. J Appl Microbiol. 2021;130(6):1813-22.
44. Zhai Q, Feng S, Arjan N, et al. A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr. 2019;59(19):3227-36.
45. Шендеров Б.А., Юдин С.М., Загайнова А.В., и др. Akkermansia muciniphila – новый универсальный пробиотик на основе живых комменсальных бактерий кишечника человека и животных: действительность или легенда? Журнал микробиологии, эпидемиологии и иммунобиологии. 2019;96(4):105-15.
46. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426-36.
47. Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285-94.
48. Zhao S, Liu W, Wang J, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol. 2017;58(1):1-14.
49. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA.
2013;110(22):9066-71.
50. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107-113.
51. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096-103.
52. Wu H, Tremaroli V, Schmidt C, et al. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross- Sectional Study. Cell Metab. 2020;32(3):379-90.
53. Xu J, Liang R, Zhang W, et al. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes. 2020;12(3):224-36.
54. Agarwal P, Khatri P, Billack B, et al. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res. 2014;31(12):3404-14.
55. Antushevich H. Fecal microbiota transplantation in disease therapy. Clin Chim Acta. 2020;503:90-8.
56. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6. doi:10.1053/j.gastro.2012.06.031. Erratum in: Gastroenterology. 2013;144(1):250.
57. Kootte RS, Levin E, Salojärvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611-9.e6. doi:10.1016/j.cmet.2017.09.008
58. De Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut. 2020;69(3):502-12.
Авторы
Р.А. Исаева, З.Р. Алиметова, Г.Ш. Исаева*
ГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия
*guisaeva@rambler.ru
________________________________________________
Regina A. Isaeva, Zulfiya R. Alimetova, Guzel Sh. Isaeva*