Эффективность применения низкокалорийных диет для лечения пациентов с ожирением
Эффективность применения низкокалорийных диет для лечения пациентов с ожирением
Трошина Е.А., Комшилова К.А., Силина Н.В., Ершова Е.В., Дзгоева Ф.Х. Эффективность применения низкокалорийных диет для лечения пациентов с ожирением. Consilium Medicum. 2024;26(4):251–256.
DOI: 10.26442/20751753.2024.4.202768
Troshina EA, Komshilova KA, Silina NV, Ershova EV, Dzgoeva FK. The effectiveness of low-calorie dietary interventions in managing obesity in patients. A review. Consilium Medicum. 2024;26(4):251–256.
DOI: 10.26442/20751753.2024.4.202768
Эффективность применения низкокалорийных диет для лечения пациентов с ожирением
Трошина Е.А., Комшилова К.А., Силина Н.В., Ершова Е.В., Дзгоева Ф.Х. Эффективность применения низкокалорийных диет для лечения пациентов с ожирением. Consilium Medicum. 2024;26(4):251–256.
DOI: 10.26442/20751753.2024.4.202768
Troshina EA, Komshilova KA, Silina NV, Ershova EV, Dzgoeva FK. The effectiveness of low-calorie dietary interventions in managing obesity in patients. A review. Consilium Medicum. 2024;26(4):251–256.
DOI: 10.26442/20751753.2024.4.202768
Ожирение представляет собой многофакторную патологию, ассоциированную с комплексом метаболических нарушений, что обусловливает высокую социальную значимость данной патологии. Основную роль в снижении массы тела занимают диетологические рекомендации – снижение калорийности рациона питания, в связи с чем в настоящее время уделяется большое внимание эффективным программам снижения массы тела. Крайне важно не только назначать медикаментозную терапию по поводу имеющихся нарушений обмена веществ, но и как можно раньше рекомендовать пациенту рациональную низкокалорийную диету для эффективного и безопасного снижения массы тела. Данные многочисленных исследований демонстрируют эффективность применения низкокалорийных и очень низкокалорийных диет в лечении ожирения, соблюдение которых у пациентов часто вызывает определенные трудности, обусловленные необходимостью сохранения нутритивной ценности рациона и сбалансированного подбора макро- и микронутриентов. Длительное применение редуцированных диет может привести к развитию гиповитаминозов, недостатку пищевых волокон или снижению потребления белка. В 2024 г. на российском рынке появился новый продукт сбалансированного низкокалорийного питания ОПТИФАСТ (OPTIFAST®, компания Nestlé Health Science, Германия), который обеспечивает пациента всеми необходимыми питательными веществами и позволяет управлять суточным калоражем, дает пациенту чувство сытости, необходимое для высокой приверженности низкокалорийной диете, что обеспечивает эффективное и безопасное снижение массы тела преимущественно за счет жировой ткани.
Obesity is a complex condition that is associated with various metabolic disorders and has a significant social impact. Weight loss is primarily achieved through dietary changes, such as reducing calorie intake. Therefore, it is essential to provide patients with effective weight loss programs and recommend a low-calorie diet as soon as possible. In addition to drug therapy for metabolic disorders, it is crucial to educate patients about the importance of a healthy diet and encourage them to adopt a low-calorie approach. Numerous studies have demonstrated the effectiveness of low-calorie and very low-calorie diets for treating obesity. However, compliance with these diets can be challenging, as they require careful attention to nutritional value and the balance of macronutrients and micronutrients. Prolonged adherence to reduced dietary regimens can lead to hypovitaminosis, lack of dietary fiber, or decreased protein intake. In 2024, a new product for balanced low-calorie nutrition, OPTIFAST, was introduced on the Russian market by the Nestlé Health Science company in Germany. This product provides patients with all essential nutrients and allows them to manage their daily calorie intake. It also provides a feeling of fullness that is essential for maintaining adherence to a low-calorie diet and ensuring effective and safe weight loss, primarily through adipose tissue reduction.
1. Здравоохранение в России. 2023: Стат. сб. Росстат. М., 2023. Режим доступа: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf. Cсылка активна на 25.04.2024 [Zdravookhranenie v Rossii. 2023: Stat. sb. Rosstat. Moscow, 2023. Available at: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf. Accessed: 25.04.2024 (in Russian)].
2. Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104-12 [Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes Mellitus. 2016;19(2):104-12 (in Russian)]. DOI:10.14341/DM2004116-17
3. WHO European Childhood Obesity Surveillance Initiative (COSI). Available at: https://www.who.int/europe/initiatives/who-european-childhood-obesity-surveillance-initiative-(cosi). Accessed: 25.04.2024.
4. World Obesity Federation. World obesity atlas 2022. London: World Obesity Federation, 2022.
5. Ley SH, Ardisson KAV, Sun Q, et al. Contribution of the Nurses’ Health Studies to Uncovering Risk Factors for Type 2 Diabetes: Diet, Lifestyle, Biomarkers, and Genetics. Am J Public Health. 2016;106(9):1624-30. DOI:10.2105/AJPH.2016.303314
6. Дедов И.И., Мокрышева Н.Г., Мельниченко Г.А., и др. Ожирение. Клинические рекомендации. Consilium Medicum. 2021;23(4):311-25 [Dedov II, Mokrysheva NG, Mel’nichenko GA, et al. Obesity. Clinical guidelines. Consilium Medicum. 2021;23(4):311-25 (in Russian)]. DOI:10.26442/20751753.2021.4.200832
7. Министерство здравоохранения РФ. Методические руководства. Стандарты лечебного питания. M., 2017 [Ministerstvo zdravookhraneniia RF. Metodicheskiie rukovodstva. Standarty lechebnogo pitaniia. Moscow, 2017 (in Russian)].
8. Ley SK, Andres S, Qi T, et al. Contribution of the Nurses’ Health Studies to Uncovering Risk Factors for Type 2 Diabetes: Diet, Lifestyle, Biomarkers, and Genetics. Am J Public Health. 2016;106:e1-e7. DOI:10.2105/AJPH.2016.303314.
9. Ruze R, Liu T, Zou X, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol. 2023;14:1161521. DOI:10.3389/fendo.2023.1161521
10. Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab. 2020;34:27-42. DOI:10.1016/j.molmet.2019.12.014
11. Tao C, Holland WL, Wang QA, et al. Short-term versus long-term effects of adipocyte toll-like receptor 4 activation on insulin resistance in Male mice. Endocrinology. 2017;158(5):1260-70. DOI:10.1210/en.2017-00024
12. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys. 2003;419(2):101-9. DOI:10.1016/j.abb.2003.08.020
13. Frakes AE, Dillin A. The UPR: sensor and coordinator of organismal homeostasis. Mol Cell. 2017;66(6):761-71. DOI:10.1016/j.molcel.2017.05.031
14. Lalia AZ, Lanza IR. Insulin-sensitizing effects of omega-3 fatty acids: lost in translation? Nutrients. 2016;8(6):329. DOI:10.3390/nu8060329
15. Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611. DOI:10.1038/ncomms4611
16. Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol. 2019;81:139-64. DOI:10.1146/annurev-physiol-020518-114455
17. Siddik MAB, Shin AC. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond. Endocrinol Metab (Seoul Korea). 2019;34(3):234-46. DOI:10.3803/EnM.2019.34.3.234
18. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376-81. DOI:10.1038/nature18646
19. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-6. DOI:10.1038/nature12506
20. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2(10):747-56.
DOI:10.1016/S2468-1253(17)30147-4.
21. Grasset E, Burcelin R. The gut microbiota to the brain axis in the metabolic control. Rev Endocr Metab Disord. 2019;20(4):427-38. DOI:10.1007/s11154-019-09511-1.
22. Mustajoki P, Pekkarinen T. Very low energy diets in the treatment of obesity. Obes Rev. 2001;2(1):61-72.
23. Ard JD, Lewis KH, Rothberg A, et al. Effectiveness of a Total Meal Replacement Program (OPTIFAST Program) on Weight Loss: Results from the OPTIWIN Study. Obesity (Silver Spring). 2019;27(1):22-9.
24. Bischoff SC, Damms-Machado A, Betz C, et al. Multicenter evaluation of an interdisciplinary 52-week weight loss program for obesity with regard to body weight, comorbidities and quality of life – a prospective study. Int J Obesity. 2012;36:614-24. DOI:10.1038/ijo.2011.107
25. Tricò D, Moriconi D, Berta R, et al. Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals. Nutrients. 2021;13:1345. DOI:10.3390/nu13041345
26. Storck LJ, Meffert PJ, Rausch J, et al. Efficiency of a 15-Week Weight-Loss Program, Including a Low-Calorie Formula Diet, on Glycemic Control in Patients with Type 2 Diabetes Mellitus and Overweight or Obesity. Obes Facts. 2021;14(1):1-11. DOI:10.1159/000511453
27. Ard JD, Neeland IJ, Rothberg AE, et al. The OPTIFAST total and partial meal replacement programme reduces cardiometabolic risk in adults with obesity: Secondary and exploratory analysis of the OPTIWIN study. Diabetes Obes Metab. 2024;26(3):950-60. DOI:10.1111/dom.15392
28. Meddings Maybury L, Kelly E, Dent R, Bielawska B. Сhange in alt during modified optifast weight loss program in individuals at risk for non-alcoholic fatty liver disease. J Can Assoc Gastroenterol. 2023;6(Suppl. 1):95-6. DOI:10.1093/jcag/gwac036.285
29. Colles SL, Dixon JB, Marks P, et al. Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. Am J Clin Nutr. 2006;84(2):304-11.
30. Van Wissen J, Bakker N, Doodeman HJ, et al. Preoperative Methods to Reduce Liver Volume in Bariatric Surgery: a Systematic Review. Obes Surg. 2016;26(2):251-6.
31. Oster M, Hein N, Aksan A, et al. Efficacy and Safety of Intragastric Balloon Therapy Compared to a Multidisciplinary Weight Loss Program (OPTIFAST) in a Real-World Population: A Propensity Score Matching Analysis. Obes Facts. 2023;16(1):89-98. DOI:10.1159/000524895
32. Van Nieuwenhove Y, Dambrauskas Z, Campillo-Soto A, et al. Preoperative very low-calorie diet and operative outcome after laparoscopic gastric bypass: a randomized multicenter study. Arch Surg. 2011;146(11):1300-5.
________________________________________________
1. Zdravookhranenie v Rossii. 2023: Stat. sb. Rosstat. Moscow, 2023. Available at: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf. Accessed: 25.04.2024 (in Russian).
2. Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes Mellitus. 2016;19(2):104-12 (in Russian). DOI:10.14341/DM2004116-17
3. WHO European Childhood Obesity Surveillance Initiative (COSI). Available at: https://www.who.int/europe/initiatives/who-european-childhood-obesity-surveillance-initiative-(cosi). Accessed: 25.04.2024.
4. World Obesity Federation. World obesity atlas 2022. London: World Obesity Federation, 2022.
5. Ley SH, Ardisson KAV, Sun Q, et al. Contribution of the Nurses’ Health Studies to Uncovering Risk Factors for Type 2 Diabetes: Diet, Lifestyle, Biomarkers, and Genetics. Am J Public Health. 2016;106(9):1624-30. DOI:10.2105/AJPH.2016.303314
6. Dedov II, Mokrysheva NG, Mel’nichenko GA, et al. Obesity. Clinical guidelines. Consilium Medicum. 2021;23(4):311-25 (in Russian). DOI:10.26442/20751753.2021.4.200832
7. Ministerstvo zdravookhraneniia RF. Metodicheskiie rukovodstva. Standarty lechebnogo pitaniia. Moscow, 2017 (in Russian).
8. Ley SK, Andres S, Qi T, et al. Contribution of the Nurses’ Health Studies to Uncovering Risk Factors for Type 2 Diabetes: Diet, Lifestyle, Biomarkers, and Genetics. Am J Public Health. 2016;106:e1-e7. DOI:10.2105/AJPH.2016.303314.
9. Ruze R, Liu T, Zou X, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol. 2023;14:1161521. DOI:10.3389/fendo.2023.1161521
10. Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab. 2020;34:27-42. DOI:10.1016/j.molmet.2019.12.014
11. Tao C, Holland WL, Wang QA, et al. Short-term versus long-term effects of adipocyte toll-like receptor 4 activation on insulin resistance in Male mice. Endocrinology. 2017;158(5):1260-70. DOI:10.1210/en.2017-00024
12. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys. 2003;419(2):101-9. DOI:10.1016/j.abb.2003.08.020
13. Frakes AE, Dillin A. The UPR: sensor and coordinator of organismal homeostasis. Mol Cell. 2017;66(6):761-71. DOI:10.1016/j.molcel.2017.05.031
14. Lalia AZ, Lanza IR. Insulin-sensitizing effects of omega-3 fatty acids: lost in translation? Nutrients. 2016;8(6):329. DOI:10.3390/nu8060329
15. Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611. DOI:10.1038/ncomms4611
16. Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol. 2019;81:139-64. DOI:10.1146/annurev-physiol-020518-114455
17. Siddik MAB, Shin AC. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond. Endocrinol Metab (Seoul Korea). 2019;34(3):234-46. DOI:10.3803/EnM.2019.34.3.234
18. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376-81. DOI:10.1038/nature18646
19. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-6. DOI:10.1038/nature12506
20. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2(10):747-56.
DOI:10.1016/S2468-1253(17)30147-4.
21. Grasset E, Burcelin R. The gut microbiota to the brain axis in the metabolic control. Rev Endocr Metab Disord. 2019;20(4):427-38. DOI:10.1007/s11154-019-09511-1.
22. Mustajoki P, Pekkarinen T. Very low energy diets in the treatment of obesity. Obes Rev. 2001;2(1):61-72.
23. Ard JD, Lewis KH, Rothberg A, et al. Effectiveness of a Total Meal Replacement Program (OPTIFAST Program) on Weight Loss: Results from the OPTIWIN Study. Obesity (Silver Spring). 2019;27(1):22-9.
24. Bischoff SC, Damms-Machado A, Betz C, et al. Multicenter evaluation of an interdisciplinary 52-week weight loss program for obesity with regard to body weight, comorbidities and quality of life – a prospective study. Int J Obesity. 2012;36:614-24. DOI:10.1038/ijo.2011.107
25. Tricò D, Moriconi D, Berta R, et al. Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals. Nutrients. 2021;13:1345. DOI:10.3390/nu13041345
26. Storck LJ, Meffert PJ, Rausch J, et al. Efficiency of a 15-Week Weight-Loss Program, Including a Low-Calorie Formula Diet, on Glycemic Control in Patients with Type 2 Diabetes Mellitus and Overweight or Obesity. Obes Facts. 2021;14(1):1-11. DOI:10.1159/000511453
27. Ard JD, Neeland IJ, Rothberg AE, et al. The OPTIFAST total and partial meal replacement programme reduces cardiometabolic risk in adults with obesity: Secondary and exploratory analysis of the OPTIWIN study. Diabetes Obes Metab. 2024;26(3):950-60. DOI:10.1111/dom.15392
28. Meddings Maybury L, Kelly E, Dent R, Bielawska B. Сhange in alt during modified optifast weight loss program in individuals at risk for non-alcoholic fatty liver disease. J Can Assoc Gastroenterol. 2023;6(Suppl. 1):95-6. DOI:10.1093/jcag/gwac036.285
29. Colles SL, Dixon JB, Marks P, et al. Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. Am J Clin Nutr. 2006;84(2):304-11.
30. Van Wissen J, Bakker N, Doodeman HJ, et al. Preoperative Methods to Reduce Liver Volume in Bariatric Surgery: a Systematic Review. Obes Surg. 2016;26(2):251-6.
31. Oster M, Hein N, Aksan A, et al. Efficacy and Safety of Intragastric Balloon Therapy Compared to a Multidisciplinary Weight Loss Program (OPTIFAST) in a Real-World Population: A Propensity Score Matching Analysis. Obes Facts. 2023;16(1):89-98. DOI:10.1159/000524895
32. Van Nieuwenhove Y, Dambrauskas Z, Campillo-Soto A, et al. Preoperative very low-calorie diet and operative outcome after laparoscopic gastric bypass: a randomized multicenter study. Arch Surg. 2011;146(11):1300-5.