Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Устранение дефицита фолатов – основная стратегия коррекции гомоцистеинзависимой эндотелиальной дисфункции
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: гомоцистеин; эндотелиальная дисфункция; метафолин; комбинированные оральные контрацептивы, содержащие фолаты.
________________________________________________
Endothelial dysfunction is one of the most important pathogenetic mechanisms of both cardiovascular disease and uterine-placental microcirculation. Recent research shows that homocysteine plays a role of a forthcoming universal pathogenic factor in the case of mechanisms regulating cellular homeostasis depletion, namely, in a long flowing hyperhomocysteinemia by an imbalance in the antioxidant system of the body leads to a decrease in the number of endothelial progenitor cells, which reduces the regenerative capacity and plasticity of the vascular wall. Hyperhomocysteine when administered in excessive concentrations leads to inhibition of sodium-potassium adenosinetriphosphatase in the membrane of vascular smooth muscle cells, increasing intracellular sodium concentration, and thus leading to electrolyte disturbances that cause vasoconstriction becoming and essential element is a vicious circle of the underlying pathogenesis of both hypertension and preeclampsia. The use of contraceptives containing biologically active folate metafolin on preconception stage is a part of a targeted approach to the prevention of complications of pregnancy in women of reproductive age.
Key words: homocysteine; endothelial dysfunction; metafolin; combined oral contraceptives, folate containing.
2. Гайдуков С.Н., Аверина И.В. Современные подходы к диагностике и прогнозированию гестоза у беременных. Казан. мед. журн.: Издание Министерства здравоохранения Татарстана и Казанского государственного медицинского университета. 2011; 92 (1): 127–31.
3. Jakubowski H, Głowacki R. Chemical biology of homocysteine thiolactone and related metabolites. Adv Clin Chem 2011; 55: 81–103.
4. Undas A, Stepień E, Glowacki R et al. Folic acid administration and antibodies against homocysteinylated proteins in subjects with hyperhomocysteinemia. Thromb Haemost 2006; 96 (3): 342–7.
5. Stroylova YY, Chobert JM, Muronetz VI et al. N-homocysteinylation of ovine prion protein induces amyloid-like transformation. Arch Biochem Biophys 2012; 526 (1): 29–37.
6. Borowczyk K, Shih DM, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis 2012; 30 (2): 225–31.
7. Rasic-Markovic A, Stanojlovic O, Hrncic D et al. The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration. Mol Cell Biochem 2009; 327: 39–45.
8. Bogdanski P, Miller-Kasprzak E, Pupek-Musialik D et al. Plasma total homocysteine is a determinant of carotid intima-media thickness and circulating endothelial progenitor cells in patients with newly diagnosed hypertension. Clin Chem Lab Med 2012; 50 (6): 1107–13.
9. Fujiki Y, Hirashima Y, Seshimo S et al. Homocysteine induced SH-SY5Y apoptosis through activation of NADPH oxidase in U251MG cells. Neurosci Res 2012; 72 (1): 9–15.
10. Sunden SL, Renduchintala MS, Park EI et al. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 1997; 345 (1): 171–4.
11. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001; 20 (24): 3139–55.
12. Jacques PF, Bostom AG, Wilson PW et al. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr 2001; 73 (3): 613–21.
13. van der Molen EF, Arends GE, Nelen WL et al. A common mutation in the 5-, 10-methylenetetrahydrofolate reductase gene as a new risk factor for placental vasculopathy. Am J Obstet Gynecol 2000; 182 (5): 1258–63.
14. Peerbooms OL, van Os J, Drukker M et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun 2011; 25 (8): 1530–43.
15. Allen NC, Bagade S, McQueen MB et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nature 2008; 40: 827–34.
16. Maarten van den Buuse. Modelling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36 (2): 246–70.
17. Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatr 2006; 11 (2): 143–9.
18. Mabrouk H, Douki W, Mechri A et al. Hyperhomocysteinemia and schizophrenia: case control study. Hyperhomocysteinemia and schizophrenia: case control study. Encephale 2011; 37 (4): 308–13.
19. Brenner B, Kupferminc MJ. Inherited thrombophilia and poor pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2003; 17 (3): 427–39.
20. Vollset SE, Refsum H, Irgens LM et al. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine study. Am J Clin Nutr 2000; 71 (4): 962–8.
21. Streck EL, Bavaresco CS, Netto CA, Wyse AT. Chronic hyperhomocysteinemia provokes a memory deficit in rats in the Morris water maze task. Behav Brain Res 2004; 153 (2): 377–81.
22. Baydas G, Koz ST, Tuzcu M et al. Effects of maternal hyperhomocysteinemia induced by high methionine diet on the learning and memory performance in offspring. Int J Dev Neurosci 2007; 25 (3): 133–9.
23. Qureshi I, Chen H, Brown AT et al. Homocysteine-induced vascular dysregulation is mediated by the NMDA receptor. Vasc Med 2005; 10 (3): 215–23.
24. Schaub C, Uebachs M, Beck H, Linnebank M. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Exp Brain Res 2013; 225 (4): 527–34.
25. Poddar R, Paul S. Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 2009; 110 (3): 1095–106.
26. MCGowan MH, Russell P, Carper DA. Na+, K+-ATPase inhibitors down-reglate gene expression of the intracelluiar signaling protein 14-3-3 in rat lens. J Pharmacol. Exp Ther 1999; 289: 1559–63.
27. Schoner W. Endogenous cardiac glicosides, a new class of steroid hormones. Eur J Biocem 2002; 269: 2440–8.
28. Fedorova OV, Tapilskaya NI, Bzhelyansky AM et al. Interaction of Digibind with endogenous cardiotonic steroids from preeclamptic placentae. J Hypertens 2010; 28 (2): 361–6.
29. Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 2005; 48 (1): 16–42.
30. Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 2003; 21 (3–4): 97–108.
31. Huttunen HJ, Kuja-Panula J, Sorci G et al. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 2000; 275 (51): 40096–105.
32. Reali C, Scintu F, Pillai R et al. S100b counteracts effects of the neurotoxicant trimethyltin on astrocytes and microglia. J Neurosci Res 2005; 81 (5): 677–86.
33. Wainwright MS, Craft JM, Griffin WS et al. Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia. Ann Neurol 2004; 56 (1): 61–7.
34. Sorci G, Agneletti AL, Donato R. Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience 2000; 99 (4): 773–83.
35. Xiong Z, O’Hanlon D, Becker LE et al. Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res 2000; 257 (2): 281–9.
36. Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 2011; 286 (9): 7214–26.
37. Undas A, Jarkowski M, Twardowska M et al. Antibodies to N-homocysteinylated albumin as a marker for early-onset coronary artery disease in men. Thromb Haemost 2005; 93: 346–50.
38. Zhou J, Austin RC. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms 11. Biofactors 2009; 35 (2): 120–9.
39. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 2005; 3: 1646–54.
40. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of atherosclerosis. Am J Pathol 1969; 56: 111–28.
________________________________________________
1. Петрищев H.H., Власов Т.Д. Тромбогенные и тромборезистентные свойства эндотелия. Система гемостаза. Под ред. H.H.Петрищева. СПб.: Издательство СПбГМУ, 2003; с. 27–40.
2. Гайдуков С.Н., Аверина И.В. Современные подходы к диагностике и прогнозированию гестоза у беременных. Казан. мед. журн.: Издание Министерства здравоохранения Татарстана и Казанского государственного медицинского университета. 2011; 92 (1): 127–31.
3. Jakubowski H, Głowacki R. Chemical biology of homocysteine thiolactone and related metabolites. Adv Clin Chem 2011; 55: 81–103.
4. Undas A, Stepień E, Glowacki R et al. Folic acid administration and antibodies against homocysteinylated proteins in subjects with hyperhomocysteinemia. Thromb Haemost 2006; 96 (3): 342–7.
5. Stroylova YY, Chobert JM, Muronetz VI et al. N-homocysteinylation of ovine prion protein induces amyloid-like transformation. Arch Biochem Biophys 2012; 526 (1): 29–37.
6. Borowczyk K, Shih DM, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis 2012; 30 (2): 225–31.
7. Rasic-Markovic A, Stanojlovic O, Hrncic D et al. The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration. Mol Cell Biochem 2009; 327: 39–45.
8. Bogdanski P, Miller-Kasprzak E, Pupek-Musialik D et al. Plasma total homocysteine is a determinant of carotid intima-media thickness and circulating endothelial progenitor cells in patients with newly diagnosed hypertension. Clin Chem Lab Med 2012; 50 (6): 1107–13.
9. Fujiki Y, Hirashima Y, Seshimo S et al. Homocysteine induced SH-SY5Y apoptosis through activation of NADPH oxidase in U251MG cells. Neurosci Res 2012; 72 (1): 9–15.
10. Sunden SL, Renduchintala MS, Park EI et al. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 1997; 345 (1): 171–4.
11. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001; 20 (24): 3139–55.
12. Jacques PF, Bostom AG, Wilson PW et al. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr 2001; 73 (3): 613–21.
13. van der Molen EF, Arends GE, Nelen WL et al. A common mutation in the 5-, 10-methylenetetrahydrofolate reductase gene as a new risk factor for placental vasculopathy. Am J Obstet Gynecol 2000; 182 (5): 1258–63.
14. Peerbooms OL, van Os J, Drukker M et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun 2011; 25 (8): 1530–43.
15. Allen NC, Bagade S, McQueen MB et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nature 2008; 40: 827–34.
16. Maarten van den Buuse. Modelling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36 (2): 246–70.
17. Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatr 2006; 11 (2): 143–9.
18. Mabrouk H, Douki W, Mechri A et al. Hyperhomocysteinemia and schizophrenia: case control study. Hyperhomocysteinemia and schizophrenia: case control study. Encephale 2011; 37 (4): 308–13.
19. Brenner B, Kupferminc MJ. Inherited thrombophilia and poor pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2003; 17 (3): 427–39.
20. Vollset SE, Refsum H, Irgens LM et al. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine study. Am J Clin Nutr 2000; 71 (4): 962–8.
21. Streck EL, Bavaresco CS, Netto CA, Wyse AT. Chronic hyperhomocysteinemia provokes a memory deficit in rats in the Morris water maze task. Behav Brain Res 2004; 153 (2): 377–81.
22. Baydas G, Koz ST, Tuzcu M et al. Effects of maternal hyperhomocysteinemia induced by high methionine diet on the learning and memory performance in offspring. Int J Dev Neurosci 2007; 25 (3): 133–9.
23. Qureshi I, Chen H, Brown AT et al. Homocysteine-induced vascular dysregulation is mediated by the NMDA receptor. Vasc Med 2005; 10 (3): 215–23.
24. Schaub C, Uebachs M, Beck H, Linnebank M. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Exp Brain Res 2013; 225 (4): 527–34.
25. Poddar R, Paul S. Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 2009; 110 (3): 1095–106.
26. MCGowan MH, Russell P, Carper DA. Na+, K+-ATPase inhibitors down-reglate gene expression of the intracelluiar signaling protein 14-3-3 in rat lens. J Pharmacol. Exp Ther 1999; 289: 1559–63.
27. Schoner W. Endogenous cardiac glicosides, a new class of steroid hormones. Eur J Biocem 2002; 269: 2440–8.
28. Fedorova OV, Tapilskaya NI, Bzhelyansky AM et al. Interaction of Digibind with endogenous cardiotonic steroids from preeclamptic placentae. J Hypertens 2010; 28 (2): 361–6.
29. Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 2005; 48 (1): 16–42.
30. Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 2003; 21 (3–4): 97–108.
31. Huttunen HJ, Kuja-Panula J, Sorci G et al. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 2000; 275 (51): 40096–105.
32. Reali C, Scintu F, Pillai R et al. S100b counteracts effects of the neurotoxicant trimethyltin on astrocytes and microglia. J Neurosci Res 2005; 81 (5): 677–86.
33. Wainwright MS, Craft JM, Griffin WS et al. Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia. Ann Neurol 2004; 56 (1): 61–7.
34. Sorci G, Agneletti AL, Donato R. Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience 2000; 99 (4): 773–83.
35. Xiong Z, O’Hanlon D, Becker LE et al. Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res 2000; 257 (2): 281–9.
36. Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 2011; 286 (9): 7214–26.
37. Undas A, Jarkowski M, Twardowska M et al. Antibodies to N-homocysteinylated albumin as a marker for early-onset coronary artery disease in men. Thromb Haemost 2005; 93: 346–50.
38. Zhou J, Austin RC. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms 11. Biofactors 2009; 35 (2): 120–9.
39. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 2005; 3: 1646–54.
40. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of atherosclerosis. Am J Pathol 1969; 56: 111–28.
ГБОУ ВПО Санкт-Петербургский государственный педиатрический медицинский университет Минздрава РФ
________________________________________________
N.I.Tapilskaya, S.N.Gaidukov