Клиническое применение интерферонов: современный взгляд на вопросы эффективности и безопасности. Обзор литературы
Клиническое применение интерферонов: современный взгляд на вопросы эффективности и безопасности. Обзор литературы
Валиев Т.Т. Клиническое применение интерферонов: современный взгляд на вопросы эффективности и безопасности. Обзор литературы. Педиатрия. Consilium Medicum. 2020; 3. DOI: 10.26442/26586630.2020.3.200286
________________________________________________
Valiev T.T. Interferon clinical use: modern view on efficacy and safety. Literature review. Pediatrics. Consilium Medicum. 2020; 3. DOI: 10.26442/26586630.2020.3.200286
Клиническое применение интерферонов: современный взгляд на вопросы эффективности и безопасности. Обзор литературы
Валиев Т.Т. Клиническое применение интерферонов: современный взгляд на вопросы эффективности и безопасности. Обзор литературы. Педиатрия. Consilium Medicum. 2020; 3. DOI: 10.26442/26586630.2020.3.200286
________________________________________________
Valiev T.T. Interferon clinical use: modern view on efficacy and safety. Literature review. Pediatrics. Consilium Medicum. 2020; 3. DOI: 10.26442/26586630.2020.3.200286
С момента открытия интерферонов (ИФН) прошло около 65 лет, за которые описана структура данной группы цитокинов, выделены их типы,
определены клетки-продуценты и гены, кодирующие ИФН. Большое внимание уделено изучению функций ИФН и биологической роли в противовирусном и противоопухолевом иммунитете, а также развитии системной воспалительной и аутоиммунной реакции. Благодаря биологическим
процессам, происходящим в организме при участии ИФН, определены показания к клиническому применению ИФН: терапия вирусных инфекций
и ограниченного числа опухолевых заболеваний. В настоящее время показания к использованию ИФН в клинической практике постепенно сокращаются, что обусловлено не только появлением новых (в том числе таргетных) препаратов, но и накоплением данных по отдаленным побочным
эффектам, вызванным ИФН. Одно из наиболее серьезных нежелательных явлений – развитие аутоиммунных заболеваний, что заставляет пересмотреть терапию ИФН в пользу более безопасных средств.
________________________________________________
Interferons (IFN) were find about 65 years ago and during this time it was studied structure, types, cells producing this cytokines and genes coding of IFN.
It was paid a great attention to IFN functions and biologic role in anti-viral and anti-tumor immunity, and in systemic inflammatory and autoimmune reactions.
By biologic effects, which arise in organism by IFN, administrations for IFN clinical use were formed: viral infections and malignancies therapy. Currently, proposed clinical IFN use are scale down, because of not only new (including targeted) drugs, but also increased reports about long-term side effects, caused by
IFN. One of the most serious side effects are autoimmune disorders, which make us reconsider IFN therapy to more safety drugs.
1. Khanna N R, Gerriets V. Interferon. In: StatPearls [Internet]. StatPearls Publishing 2020. https://www.ncbi.nlm.nih.gov/books/NBK555932/
2. Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I
and Type III Interferons. Immunity 2019; 50 (4): 907–23.
3. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex
web of host defenses. Annu Rev Immunol 2014; 32: 513–45.
4. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol
Sci 1957; 147: 258–67.
5. Booy S, Hofland L, van Eijck C. Potentials of interferon therapy in the treatment of
pancreatic cancer. J Interferon Cytokine Res 2015; 35: 327–39.
6. Rönnblom L. The type I interferon system in etiopathogenesis of autoimmune diseases. Upsala J Med Sci 2011; 116: 227–37.
7. Asmana Ningrum R. Human interferon alpha-2b: a therapeutic protein for cancer
treatment. Scientifica (Cairo) 2014; 2014: 970315.
8. Thomas H, Foster G, Platis D. Mechanisms of action of interferon and nucleoside
analogues. J Hepatol 2003; 39 (Suppl. 1): S93–8.
9. Farrar MA, Schreiber RD. The molecular cell biology of interferon-gamma and its
receptor. Annu Rev Immunol 1993; 11: 571–611.
10. Razaghi A, Owens L, Heimann K. Review of the recombinant human interferon
gamma as an immunotherapeutic: Impacts of production platforms and glycosylation. J Biotechnol 2016; 240: 48–60.
11. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14: 778–809.
12. Alspach E, Lussier DM, Schreiber RD. Interferon g and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring
Harb Perspect Biol 2019; 11: a028480.
13. Kotenko SV, Gallagher G, Baurin VV et al. IFN-lambdas mediate antiviral protection
through a distinct class II cytokine receptor complex. Nat Immunol 2003; 4: 69–77.
14. Sheppard P, Kindsvogel W, Xu W et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003; 4: 63–8.
15. Sleijfer S, Bannink M, Van Gool AR et al. Side effects of interferon-alpha therapy.
Pharm World Sci 2005; 27 (6): 423–31.
16. Torkildsen Ø, Myhr KM, Bø L. Disease-modifying treatments for multiple sclerosis – a review of approved medications. Eur J Neurol 2016; 23 (1): 18–27.
17. Miller CH, Maher SG, Young HA. Clinical Use of Interferon-gamma. Ann N Y Acad
Sci 2009; 1182: 69–79.
18. Lasfar A, Zloza A, Cohen-Solal KA. IFN-lambda therapy: current status and future
perspectives. Drug Discov Today 2016; 21 (1): 167–71.
19. Cascinelli N, Belli F, MacKie RM et al. Effect of long-term adjuvant therapy with interferon alpha-2a in patients with regional node metastases from cutaneous melanoma: a randomized trial. Lancet 2001; 358: 866–9.
20. McHutchison JG, Lawitz EJ, Shiffman ML et al. Peginterferon alfa-2b or alfa-2a with
ribavirin for treatment of hepatitis C infection. N Engl J Med 2009; 361: 580–93.
21. Reichard O, Norkrans G, Fryden A et al. Randomised, double-blind, placebo-controlled trial of interferon alpha-2b with and without ribavirin for chronic hepatitis
C. Lancet 1998; 351: 83–7.
22. Janssen HL, van Zonneveld M, Senturk H et al. Pegylated interferon alfa-2b alone or
in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet 2005; 365: 123–9.
23. Yao JC, Guthrie KA, Moran C et al. Phase III prospective randomized comparison
trial of depot octreotide plus interferon alfa-2b versus depot octreotide plus bevacizumab in patients with advanced carcinoid tumors: SWOG S0518. J Clin Oncol
2017; 35: 1695–703.
24. Eggermont AM, Suciu S, Santinami M et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of
EORTC 18991, a randomized phase III trial. Lancet 2008; 372: 117–26.
25. Hansson J, Aamdal S, Bastholt L et al. Two different durations of adjuvant therapy
with intermediate-dose interferon alfa-2b in patients with high-risk melanoma
(Nordic IFN trial): a randomized phase 3 trial. Lancet Oncol 2011; 12: 144–52.
26. Lau GK, Piratvisuth T, Luo KX et al. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med 2005; 352: 2682–95.
27. Manns MP, McHutchison JG, Gordon SC et al. Peginterferon alfa-2b plus ribavirin
compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001; 358: 958–65.
28. Hauser SL, Bar-Or A, Comi G et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med 2017; 376: 221–34.
29. Kappos L, Wiendl H, Selmaj K et al. Daclizumab HYP versus Interferon Beta-1a in
Relapsing Multiple Sclerosis. N Engl J Med 2015; 373: 1418–28.
30. Khan UT, Tanasescu R, Constantinescu CS. PEGylated IFNb-1a in the treatment of
multiple sclerosis. Expert Opin Biol Ther 2015; 15: 1077–84.
31. Newsome SD, Kieseier BC, Arnold DL et al. Subgroup and sensitivity analyses of annualized relapse rate over 2 years in the ADVANCE trial of peginterferon beta-1a in
patients with relapsing-remitting multiple sclerosis. J Neurol 2016; 263: 1778–87.
32. Bayas A, Gold R. Lessons from 10 years of interferon beta-1b (Betaferon/Betaseron)
treatment. J Neurol 2003; 250 (4): IV3–IV8.
33. Heim MH. 25 years of interferon-based treatment of chronic hepatitis C: an epoch
coming to an end. Nat Rev Immunol 2013; 13 (7): 535–42.
34. Sarasin-Filipowicz M, Oakeley EJ, Duong FHT et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proceed Nat Acad Sci 2008; 105 (19): 7034–9.
35. Huang Y, Li M-H, Hou M. Peginterferon alfa-2a for the treatment of chronic hepatitis C
in the era of direct-acting antivirals. Hepatobil Pancreat Dis Intern 2017; 16 (5): 470–9.
36. Dash S, Aydin Y, Widmer KE et al. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7: 45–76.
37. Morgan RL, Baack B, Smith BD et al. Eradication of hepatitis C virus infection and
the development of hepatocellular carcinoma a meta-analysis of observational studies. Ann Intern Med 2013; 158 (5): 329.
38. Rutledge SM, Zheng H, Li DK et al. No evidence for higher rates of hepatocellular carcinoma after direct-acting antiviral treatment: a meta-analysis. Hepatol Res 2019; 5: 31.
39. Waziry R, Hajarizadeh B, Grebely J et al. Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: a systematic review, meta-analyses, and meta-regression. J Hepatol 2017; 67 (6): 1204–12.
Педиатрия. Consilium Medicum 2020 | №3 / Pediatrics. Consilium Medicum 2020 | NO. 3 8
Timur T. Valiev / Pediatrics. Consilium Medicum. 2020; 3.
40. Greenberg HB, Pollard RB, Lutwick LI et al. Effect of Human Leukocyte Interferon
on Hepatitis B Virus Infection in Patients with Chronic Active Hepatitis. New Eng J
Med 1976; 295 (10): 517–22.
41. Yang J, Zhao LS. Clinical significance of 4 patients with chronic hepatitis B achieving HBsAg clearance by treated with pegylated interferon alpha-2a for less than
1 year: a short report. Virol J 2009; 6: 97.
42. Sun J, Ding H, Chen G et al. Sustained serological and complete responses in
HBeAg-positive patients treated with Peginterferon alfa-2b: a 6-year long-term follow-up of a multicenter, randomized, controlled trial in China. BMC Gastroenterol
2019; 19 (1): 65.
43. Terrault NA, Bzowej NH, Chang K-M et al. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 2015; 63 (1): 261–83.
44. Tarhini AA, Lee SJ, Li X et al. E3611-A Randomized Phase II Study of Ipilimumab at
3 or 10 mg/kg Alone or in Combination with High-Dose Interferon-a2b in Advanced Melanoma. Clin Cancer Res 2019; 25 (2): 524–32.
45. Di Trolio R, Simeone E, Di Lorenzo G et al. The use of interferon in melanoma patients: A systematic review. Cytokine Growth Factor Rev 2015; 26 (2): 203–12.
46. Mocellin S, Pasquali S, Rossi CR et al. Interferon alpha adjuvant therapy in patients
with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst
2010; 102: 493–501.
47. Jacobs L, O’Malley J, Freeman A et al. Intrathecal interferon reduces exacerbations
of multiple sclerosis. Science 1981; 214 (4524): 1026–8.
48. Bose P, Verstovsek S. Updates in the management of polycythemia vera and essential thrombocythemia. Ther Adv Hematol 2019; 10: 2040620719870052.
49. Kiladjian JJ, Cassinat B, Chevret S et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera.
Blood 2008; 112: 3065–72.
50. Mascarenhas JO, Kosiorek HE, Prchal JT et al. Results of the myeloproliferative neoplasms -research consortium (MPN-RC) 112 randomized trial of pegylated interferon
alfa-2a (PEG) versus hydroxyurea (HU) therapy for the treatment of high risk polycythemia vera (PV) and high risk essential thrombocythemia (ET). Blood 2018; 132: 577.
51. Gisslinger H, Klade C, Georgiev P et al. Evidence for superior efficacy and disease
modification after three years of prospective randomized controlled treatment of
polycythemia vera patients with ropeginterferon alfa-2b vs. HU/BAT. Blood 2018;
132: 579.
52. Меликян А.Л., Суборцева И.Н., Гилязитдинова Е.А. и др. Цепэгинтерферон
альфа-2b в лечении хронических миелопролиферативных заболеваний. Терапевтический архив. 2018; 90 (7): 23–9.
[Melikyan A.L., Subortseva I.N., Gilyazitdinova E.A. et al. Cepeginterferon alfa-2b in
the treatment of chronic myeloproliferative diseases. Therapeutic Archive. 2018;
90 (7): 23–9 (in Russian).]
53. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: I. Clinical
results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43 (4): 655–61.
54. Dhib-Jalbut S, Marks S. Interferon-beta mechanisms of action in multiple sclerosis.
Neurology 2009; 74 (1): 17–24.
55. Goodin DS, Ebers GC, Cutter G et al. Cause of death in MS: long-term follow-up of a
randomised cohort, 21 years after the start of the pivotal IFNb-1b study. BMJ Open
2012; 2 (6): e001972.
56. Jakimovski D, Kolb C, Ramanathan M et al. Interferon b for multiple sclerosis. Cold
Spring Harb Perspect Med 2018; 8: a032003.
57. Armstrong-James D, Teo IA, Shrivastava S et al. Exogenous Interferon-g Immunotherapy for Invasive Fungal Infections in Kidney Transplant Patients. Am J Transplant 2010; 10 (8): 1796–803.
58. Gamaletsou MN, Sipsas NV, Kontoyiannis DP et al. Successful salvage therapy of refractory HIV-related cryptococcal meningitis with the combination of liposomal
amphotericin B, voriconazole, and recombinant interferon-g. Diagnos Microbiol
Infect Dis 2012; 74 (4): 409–11.
59. Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 2001; 6: 34–55.
60. Zaidi MR, Merlino G. The two faces of interferon-gamma in cancer. Clin Cancer Res
2011; 17: 6118–24.
61. Hauschild A, Gogas H, Tarhini A et al. Practical guidelines for the management of
interferon-alpha-2b side effects in patients receiving adjuvant treatment for melanoma: expert opinion. Cancer 2008; 112 (5): 982–94.
62. Kirkwood JM, Bender C, Agarwala S et al. Mechanisms and management of toxicities associated with high-dose Interferon Alfa-2b therapy. J Clin Oncol 2002; 20 (3):
3703–18.
63. Verma DS, Spitzer G, Zander AR et al. Human leucocyte interferon preparation-mediated block of granulopoietic differentiation in vitro. Exp Hematol 1981; 9 (1):
63–76.
64. Ortega JA, Ma A, Shore NA et al. Suppressive effect of interferon on erythroid cell
proliferation. Exp Hematol 1979; 7 (3): 145–9.
65. Essers MAG, Offner S, Blanco-Bose WE et al. IFNa activates dormant haematopoietic stem cells in vivo. Nature 2009; 458 (7240): 904–8.
66. Sato T, Onai N, Yoshihara H et al. Interferon regulatory factor-2 protects quiescent
hematopoietic stem cells from type I interferon–dependent exhaustion. Nat Med
2009; 15 (6): 696–700.
67. Chakrabarti D, Hultgren B, Stewart TA. IFN-alpha induces autoimmune T cells through the induction of intracellular adhesion molecule-1 and B72. J Immunol 1996;
157 (2): 522–8.
68. Nishiwaki H, Ogura Y, Miyamoto K et al. Interferon alfa induces leucocyte capillary
trapping in rat retinal microcirculation. Arch Ophthalmol 1996; 114 (6): 726–30.
69. Gutman H, Schachter J, Stopel E et al. Impaired platelet aggregation in melanoma
patients treated with interferon- alpha-2b adjuvant therapy. Cancer 2002; 94 (3):
780–5.
70. Islam M, Frye RF, Richards TJ et al. Differential effect of IFNalpha-2b on the cytochrome P450 enzyme system: a potential basis of IFN toxicity and its modulation by
other drugs. Clin Cancer Res 2002; 8 (8): 2480–7.
71. VanGool AR, Kruit WH, Engels FK et al. Neuropsychiatric side effects of interferonalfa therapy. Pharm World Sci 2003; 25 (1): 11–20.
72. Pinto EF, Andrade C. Interferon-Related Depression: A Primer on Mechanisms, Treatment, and Prevention of a Common Clinical Problem. Curr Neuropharmacol 2016;
14 (7): 743–8.
73. Kolb-MКurer A, Goebeler M, MКurer M. Cutaneous Adverse Events Associated with
Interferon-b Treatment of Multiple Sclerosis. Int J Mol Sci 2015; 16: 14951–60.
74. Ozlu E, Karadag AS, Akdeniz N et al. Morphea secondary to interferon beta1b injection: a case and review of the literature. Dermatol Online J 2019; 25 (4): 10.
75. Gao D, He M, Xu Q et al. Neuromyelitis optica spectrum disorder occurred after interferon alpha therapy in malignant melanoma. Mult Scler Relat Dis 2019; 32: 33–6.
76. Burman P, Karlsson FA, Еberg K et al. Autoimmune thyroid disease in interferontreated patients. Lancet 1985; 2: 100–1.
77. Karlsson-Parra A, Burman P, Hagberg H et al. Autoantibodies to epithelial cells in
patients on long-term therapy with leucocyte-derived interferon-alpha (IFN-a).
Clin Exp Immunol 1990; 81: 72–5.
78. Rönnblom LE, Alm GV, Еberg KE. Possible induction of systemic lupus erythematosus by interferon-a treatment in a patient with a malignant carcinoid tumour. J Intern Med 1990; 227 (3): 207–10.
79. Rönnblom LE, Alm GV, Еberg KE. Autoimmunity after a-interferon therapy for malignant carcinoid tumors. Ann Intern Med 1991; 115: 178–83.
80. Hooks JJ, Moutsopoulos HM, Geis SA et al. Immune interferon in the circulation of
patients with autoimmune disease. N Engl J Med 1979; 301 (1): 5–8.
81. Ytterberg SR, Schnitzer TJ. Serum interferon levels in patients with systemic lupus
erythematosus. Arthritis Rheum 1982; 25: 401–6.
82. Bengtsson A, Sturfelt G, Truedsson L et al. Activation of type I interferon system in
systemic lupus erythematosus correlates with disease activity but not antiretroviral
antibodies. Lupus 2000; 9: 664–71.
83. Hjelmervik TO, Petersen K, Jonassen I et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjogren’s syndrome patients from healthy
control subjects. Arthritis Rheum 2005; 52: 1534–44.
84. Baechler EC, Batliwalla FM, Reed AM et al. Gene expression profiling in human
autoimmunity. Immunol Rev 2006; 210: 120–37.
85. Higgs BW, Liu Z, White B et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheumatic Dis 2011; 70 (11): 2029–36.
86. Bennett L, Palucka AK, Arce E et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003; 197: 711–23.
87. Baechler EC, Batliwalla FM, Karypis G et al. Interferon-inducible gene expression
signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci
USA 2003; 100: 2610–5.
88. Strandberg L, Ambrosi A, Espinosa A et al. Interferon-a induces upregulation and
nuclear translocation of the Ro52 autoantigen as detected by a panel of novel
Ro52-specific monoclonal antibodies. J Clin Immunol 2008; 28 (3): 220–31.
89. Vallin H, Perers A, Alm GV et al. Anti-doublestranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-a inducer in
systemic lupus erythematosus. J Immunol 1999; 163: 6306–13.
90. Båve U, Magnusson M, Eloranta M-L et al. FcgRIIa is expressed on natural IFN-a
producing cells (plasmacytoid dendritic cells) and is required for the IFN-a production induced by apoptotic cells combined with lupus IgG. J Immunol 2003; 171:
3296–302.
91. Lövgren T, Eloranta ML, Båve U et al. Induction of interferon-a production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by
necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 2004; 50: 1861–72.
92. Munoz LE, van Bavel C, Franz S et al. Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 2008; 17: 371–5.
93. Lande R, Ganguly D, Facchinetti V et al. Neutrophils activate plasmacytoid dendritic
cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci
Transl Med 2011; 3: 73ra19.
94. Garcia-Romo GS, Caielli S, Vega B et al. Netting neutrophils are major inducers of
type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med
2011; 3: 73ra20.
95. Vollmer J, Tluk S, Schmitz C et al. Immune stimulation mediated by autoantigen
binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp
Med 2005; 202: 1575–85.
96. Lövgren T, Eloranta ML, Kastner B et al. Induction of interferon-a by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and
Sjögren’s syndrome autoantigenassociated RNA. Arthritis Rheum 2006; 54:
1917–27.
97. Arbuckle MR, McClain MT, Rubertone MV et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003; 349:
1526–33.
98. McClain MT, Heinlen LD, Dennis GJ et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 2005; 11: 85–9.
99. Båve U, Nordmark G, Lövgren T et al. Activation of the type I interferon system in
primary Sjögren’s syndrome: a possible etiopathogenic mechanism. Arthritis
Rheum 2005; 52: 1185–95.
9 Педиатрия. Consilium Medicum 2020 | №3 / Pediatrics. Consilium Medicum 2020 | NO. 3
100. Eloranta ML, Barbasso SH, Ulfgren AK et al. A possible mechanism for endogenous
activation of the type I interferon system in myositis patients with anti-Jo-1 or
anti-Ro52/Ro60 autoantibodies. Arthritis Rheum 2007; 56: 3112–24.
101. Eloranta ML, Franck-Larsson K, Lovgren T et al. Type I interferon system activation
and association with disease manifestations in systemic sclerosis. Ann Rheum Dis
2010; 69: 1396–402.
102. Shiozawa S, Kuroki Y, Kim M et al. Interferon-a in lupus psychosis. Arthritis Rheum
1992; 35: 417–22.
103. Santer DM, Yoshio T, Minota S et al. Potent induction of IFN-a and chemokines by
autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus.
J Immunol 2009; 182: 1192–201.
104. Fairhurst AM, Mathian A, Connolly JE et al. Systemic IFN-a drives kidney nephritis
in B6. Sle123 mice. Eur J Immunol 2008; 38: 1948–60.
105. Kaplan MJ, Salmon JE. How does IFN-alpha insult the vasculature? Let me count
the ways. Arthritis Rheum 2011; 63: 334–6.
106. Denny MF, Thacker S, Mehta H et al. Interferon-a promotes abnormal vasculogenesis
in lupus: a potential pathway for premature atherosclerosis. Blood 2007; 110: 2907–15.
107. Lood C, Amisten S, Gullstrand B et al. Platelet transcriptional profile and protein
expression in patients with systemic lupus erythematosus: up-regulation of the
type I interferon system is strongly associated with vascular disease. Blood 2010;
116: 1951–7.
108. Li J, Fu Q, Cui H et al. Interferon-a priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-a and atherosclerosis in lupus. Arthritis Rheum 2011; 63: 492–502.
109. Niessner A, Shin MS, Pryshchep O et al. Synergistic proinflammatory effects of the
antiviral cytokine interferon-a and Toll-like receptor 4 ligands in the atherosclerotic plaque. Circulation 2007; 116: 2043–52.
110. Taniguchi K, Petersson M, Hџoglund P et al. Interferon gamma induces lung colonization by intravenously inoculated B16 melanoma cells in parallel with enhanced expression of class I major histocompatibility complex antigens. Proc Natl
Acad Sci U S A 1987; 84: 3405–9.
111. Bröcker EB, Zwadlo G, Holzmann B et al. Inflammatory cell infiltrates in human
melanoma at different stages of tumor progression. Int J Cancer 1988; 41: 562–7.
112. Lollini PL, Bosco MC, Cavallo F et al. Inhibition of tumor growth and enhancement
of metastasis after transfection of the gamma-interferon gene. Int J Cancer 1993;
55: 320–9.
113. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–70.
114. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6: 836–48.
115. Mellor AL, Munn DH. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 2008; 8: 74–80.
116. Brody JR, Costantino CL, Berger AC et al. Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 2009; 8: 1930–4.
117. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev 2008; 222: 206–21.
118. Prendergast GC. Immune escape as a fundamental trait of cancer: focus on IDO.
Oncogene 2008; 27:3 889–900.
119. Irmler IM, Gajda M, Br€auer R. Exacerbation of antigen-induced arthritis in
IFN-gamma-deficient mice as a result of unrestricted IL-17 response. J Immunol
2007; 179: 6228–36.
120. Manoury-Schwartz B, Chiocchia G, Bessis N et al. High susceptibility to collageninduced arthritis in mice lacking IFN-gamma receptors. J Immunol 1997; 158:
5501–6.
121. Herlyn M, Guerry D, Koprowski H. Recombinant gamma-interferon induces changes in expression and shedding of antigens associated with normal human melanocytes, nevus cells, and primary and metastatic melanoma cells. J Immunol 1985;
134: 4226–30.
122. Tsujisaki M, Igarashi M, Sakaguchi K et al. Immunochemical and functional analysis
of HLA class II antigens induced by recombinant immune interferon on normal
epidermal melanocytes. J Immunol 1987; 138: 1310–6.
123. Hemon P, Jean-Louis F, Ramgolam K et al. MHC class II engagement by its ligand
LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol 2011;
186: 5173–83.
124. Maio M, Altomonte M, Tatake R et al. Reduction in susceptibility to natural killer
cell-mediated lysis of human FO-1 melanoma cells after induction of HLA class I
antigen expression by transfection with B2m gene. J Clin Invest 1991; 88: 282–9.
125. Peña J, Alonso C, Solana R. et al. Natural killer susceptibility is independent of HLA
class I antigen expression on cell lines obtained from human solid tumors. Eur J
Immunol 1990; 20: 2445–8.
126. Beatty GL, Paterson Y. IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen.
J Immunol 2000; 165: 5502–8.
127. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499–506.
128. Wischhusen J, Waschbisch A, Wiendl H. Immune-refractory cancers and their little
helpers–an extended role for immunetolerogenic MHC molecules HLA-G and
HLA-E? Semin Cancer Biol 2007; 17: 459–68.
129. Gobin SJ, van den Elsen PJ. Transcriptional regulation of the MHC class Ib genes
HLA-E, HLA-F, and HLA-G. Hum Immunol 2000; 61: 1102–7.
130. Cho HI, Lee YR, Celis E. Interferon g limits the effectiveness of melanoma peptide
vaccines. Blood 2011; 117: 135–44.
131. Zaidi MR, Davis S, Noonan FP et al. Interferon-g links ultraviolet radiation to melanomagenesis in mice. Nature 2011; 469: 548–53.
132. DeNardo DG, Barreto JB, Andreu P et al. CD4( ) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009; 16: 91–102.
133. Porter GA, Abdalla J, Lu M et al. Significance of plasma cytokine levels in melanoma patients with histologically negative sentinel lymph nodes. Ann Surg Oncol 2001; 8: 116–22.
134. Baldridge MT, King KY, Goodell MA. Inflammatory signals regulate hematopoietic
stem cells. Trends Immunol 2011; 32: 57–65.
135. Passegue´, E. Wagers AJ, Giuriato S et al. Global analysis of proliferation and cell
cycle gene expression in the regulation of hematopoietic stem and progenitor cell
fates. J Exp Med 2005; 202: 1599–611.
136. Selleri C, Sato T, Anderson S et al. Interferon-gamma and tumor necrosis factoralpha suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Physiol 1995; 165: 538–46.
137. Broxmeyer HE, Williams DE, Lu L et al. The suppressive influences of human tumor
necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: synergism of tumor necrosis factor and interferon-gamma. J Immunol 1986; 136: 4487–95.
138. Hwang JH, Kim SW, Lee HJ et al. Interferon gamma has dual potential in inhibiting
or promoting survival and growth of hematopoietic progenitors: interactions with
stromal cell-derived factor 1. Int J Hematol 2006; 84: 143–50.
139. Zeng W, Miyazato A, Chen G et al. Interferon-gamma-induced gene expression in
CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood
2006; 107: 167–75.
140. Caux C, Moreau I, Saeland S et al. Interferon-gamma enhances factor-dependent
myeloid proliferation of human CD34+ hematopoietic progenitor cells. Blood
1992; 79: 2628–35.
141. Brugger W, MOcklin W, Heimfeld S et al. Ex vivo expansion of enriched peripheral
blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta),
IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 1993; 81: 2579–84.
142. Kawano Y, Takaue Y, Hirao A et al. Synergistic effect of recombinant interferongamma and interleukin-3 on the growth of immature human hematopoietic progenitors. Blood 1991; 77: 2118–21.
143. Zhao X, Ren G, Liang L et al. Brief Report: Interferon g Induces Expansion of LinSca 1+ C Kit+ Cells. Stem cells. 2010; 28 (1): 122–6.
144. Belyaev NN, Brown DE, Diaz AIG et al. Induction of an IL7-R+ c-Kit hi myelolymphoid progenitor critically dependent on IFN-g signaling during acute malaria. Nat
Immunol 2010; 11 (6): 477–85.
145. Baldridge MT, King KY, Boles NC et al. Quiescent haematopoietic stem cells are activated by IFN-g in response to chronic infection. Nature 2010; 465: 793–7.
146. Fermo E, Bianchi P, Barcellini W et al. Immunoregulatory cytokine polymorphisms
in Italian patients affected by paroxysmal nocturnal haemoglobinuria and aplastic
anaemia. Eur J Immunogen 2004; 31: 267–9.
147. Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol 2008; 15: 162–8.
148. Kitagawa M, Saito I, Kuwata T et al. Overexpression of tumor necrosis factor
(TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients
with myelodysplastic syndromes. Leukemia 1997; 11: 2049–54.
149. WHO Pharmacological Management of Pandemic Influenza A (H1N1) 2009 Part II:
Review of Evidence: Revised February 2010. Geneva. World Health Organisation,
2010; p. 21–61. There are no published clinical randomized controlled trials or observational studies of current intranasal interferon preparations for the treatment
of influenza.
150. Роговая O.C., Измайлова Л.Ш., Сербина О.О. К вопросу об изучении патогенеза антипролиферативного действия противовирусных препаратов. Инфекционные болезни. 2020; 18 (2): 48–56.
[Rogovaia O.C., Izmailova L.Sh., Serbina O.O. K voprosu ob izuchenii patogeneza
antiproliferativnogo deistviia protivovirusnykh preparatov. Infektsionnye bolezni.
2020; 18 (2): 48–56 (in Russian).
Авторы
Т.Т. Валиев
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России,
Москва, Россия
________________________________________________
Timur T. Valiev
N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia