Результаты комплексной оценки местной этиотропной терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного и младшего школьного возраста
Результаты комплексной оценки местной этиотропной терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного и младшего школьного возраста
Захарова И.Н., Кузнецова И.С., Чередникова Т.А., Махаева А.В., Кошечкин С.И., Романов В.А., Одинцова В.Е. Результаты комплексной оценки местной этиотропной терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного и младшего школьного возраста. Педиатрия. Consilium Medicum. 2023;3:135–146. DOI: 10.26442/26586630.2023.3.202304
Zakharova IN, Kuznetsova IS, Cherednikova TA, Makhaeva AV, Koshechkin SI, Romanov VA, Odintsova VE. Pharynx infectious and inflammatory diseases local etiotropic therapy efficacy comprehensive assessment in preschool and primary school-age children. Pediatrics. Consilium Medicum. 2023;3:135–146.
DOI: 10.26442/26586630.2023.3.202304
Результаты комплексной оценки местной этиотропной терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного и младшего школьного возраста
Захарова И.Н., Кузнецова И.С., Чередникова Т.А., Махаева А.В., Кошечкин С.И., Романов В.А., Одинцова В.Е. Результаты комплексной оценки местной этиотропной терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного и младшего школьного возраста. Педиатрия. Consilium Medicum. 2023;3:135–146. DOI: 10.26442/26586630.2023.3.202304
Zakharova IN, Kuznetsova IS, Cherednikova TA, Makhaeva AV, Koshechkin SI, Romanov VA, Odintsova VE. Pharynx infectious and inflammatory diseases local etiotropic therapy efficacy comprehensive assessment in preschool and primary school-age children. Pediatrics. Consilium Medicum. 2023;3:135–146.
DOI: 10.26442/26586630.2023.3.202304
Актуальность. Микробиота ротоглотки имеет важное значение в поддержании барьерной функции, элиминации вирусов и регуляции местных защитных реакций в ответ на воспаление при острых респираторных заболеваниях (ОРЗ). Цель. Оценить влияние топических этиотропных препаратов на клинические проявления, элиминацию вирусов и микробиоту ротоглотки при лечении острого инфекционного воспаления горла при ОРЗ у детей 5–10 лет. Материалы и методы. Участие в исследовании приняли 120 амбулаторных пациентов, которых рандомизировали в 3 группы. В течение 7 дней им проводили терапию: в
1-й – аэрозолем с 0,2% гексэтидина, во 2-й – комбинированным спреем с 0,03 мг грамицидина С и 0,1 мг цетилпиридиния хлорида, в 3-й – раствором для местного применения с 0,01% бензилдиметил-миристоиламино-пропиламмония. Сравнивали изменения в выраженности клинических проявлений (интегральный показатель – модифицированная для детей шкала Tonsillopharyngitis Severity Score, TSSm; выраженность симптома «боль в горле» по шкале Вонга–Бейкера; выраженность локальных признаков воспаления по данным фарингоскопии) в группах на 2-м (5±1 день) и 3-м (12±1 день) визитах по сравнению с 1-м. Оценивали элиминацию возбудителей ОРЗ: полимеразная цепная реакция (ПЦР) мазков из ротоглотки, полученных в 1, 3 и 5-й (±1) дни (ПЦР-1, ПЦР-2, ПЦР3 соответственно), с детекцией 12 респираторных вирусов, включая SARS-CoV-2. Состояние микробиоты оценивали методом секвенирования полноразмерного гена 16S в образцах, взятых до и после лечения, 1 и 12-й (±1) дни, и сравнивали с показателями 19 здоровых ровесников. Результаты. К 3-му визиту показатели TSSm в баллах уменьшились на 4,0±1,07 – в 1-й группе; 5,0±1,48 – во 2-й и 4,0±1,02 – в 3-й. Отличия 2-й группы от 1 и 3-й статистически значимы (p<0,05). Выраженность боли в горле в баллах к 3-му визиту снизилась в 1, 2 и 3-й группах соответственно на 2,0±0,90, 2,5±0,61 и 2,1±0,60, показатели 2-й группы статистически значимо отличились от таковых в 1 и 3-й группах при p<0,05. Время достижения полного купирования симптомов заболевания по TSSm составило (сутки, M±SE) 16,6±1,47 в 1-й группе, 11,9±1,13 во 2-й и 12,4±1,38 в 3-й, межгрупповые различия (1 и 2-я группы) значимы, p<0,05. Время полного избавления от боли в горле в сутках составило 12,6±0,96, 8,0±0,87 и 9,4±1,01 соответственно, межгрупповые различия (1 и 2-я группы) значимы, p<0,05. Ко 2-му визиту доля пациентов с отрицательным результатом ПЦР увеличилась в 1-й группе на 25%, во 2-й на 43% и в 3-й на 38%, что соответствовало элиминации 81, 92 и 74% вирусов, детектированных по данным ПЦР-1 и ПЦР-2. По данным секвенирования, микробиота участников всех групп до лечения отличалась от микробиоты здоровых ровесников по показателям альфа- и бета-разнообразия, а также по данным, полученным методом балансов. После лечения во всех группах отмечены изменения микробиоты по показателям бета-разнообразия по сравнению с исходным состоянием. В отличие от 1 и 3-й групп во 2-й зафиксированы статистически значимые изменения балансов на уровне видов микроорганизмов в сторону показателей здоровых ровесников. Заключение. Топические этиотропные препараты быстро купируют жалобы и локальные признаки воспаления при лечении пациентов 5–10 лет с болью в горле при ОРЗ и способствуют быстрой элиминации возбудителей ОРЗ. Комбинированный препарат с антисептиком и бактериоциноподобным антимикробным пептидом грамицидином С обеспечивает более выраженный терапевтический эффект в более ранние сроки и элиминацию 90% всех респираторных вирусов, включая SARS-CoV-2, к 5-му дню терапии, а также наиболее щадяще действует на микробиоту ротоглотки по сравнению с монопрепаратами антисептического действия, что может объяснять его более сбалансированное противовоспалительное действие.
Background. The oropharyngeal microbiota is important in maintaining resistance, eliminating viruses and regulating local protective reactions in response to inflammation in acute respiratory infections. Aim. To evaluate of the effect of topical etiotropic therapy on clinical manifestations, elimination of viruses and on oropharyngeal microbiota in the treatment of acute infectious inflammation of the throat that occurred as part of acute respiratory infections in children aged 5–10 years. Materials and methods. 120 outpatient patients randomized into 3 equal groups were treated for 7 days: in Group 1 – 0.2% hexethidine-containing aerosol, in Group 2 – 0.03 mg combined spray gramicidin S and 0.1 mg cetylpyridinium chloride, in Group 3 – 0.01% topical solution containing benzyldimethyl-myristoylamino-propylammonium. Changes in the severity of clinical manifestations were compared (integral indicator – modified Tonsillopharyngitis Severity Score – TSSm for children, the severity of the "sore throat" symptom on the Wong–Baker scale, the severity of local signs of inflammation according to pharyngoscopy data) in groups at Visit 2 (day 5±1) and Visit 3 (day 12±1) compared with the Visit 1. The elimination of acute respiratory infection pathogens was evaluated: polymerase chain reaction (PCR) of oropharyngeal smears obtained on days 1, 3 and 5 (±1) – PCR-1, PCR-2, PCR-3 respectively, with the detection of 12 respiratory viruses, including SARS-CoV-2. The state of the microbiota was assessed by sequencing the full-size 16S gene in samples obtained before and after treatment 1st and 12th (±1) days, and compared with 19 indicators in healthy. Results. By Visit 3, the decrease in TSSm indicators was: 4.0±1.07 in Group 1; 5.0±1.48 in Group 2 and 4.0±1.02 in Group 3. The intergroup differences between Group 2 and 1, Group 2 and 3 were statistically significant (p<0.05). The severity of sore throat by Visit 3 decreased in groups 1, 2 and 3 respectively by 2.0±0.90, 2.5±0.61 and 2.1±0.60, intergroup differences between groups 2 and 1, 2 and 3 had statistical significance at p<0.05. The time to achieve complete relief of the disease according to the TSSm indicator was (day, M±SE): 16.6±1.47 in Group 1; 11.9±1.13 in Group 2 and 12.4±1.38 in Group 3, intergroup differences (groups 1 and 2) are significant, p<0.05. The time of complete relief from sore throat for groups 1–3 was 12.6±0.96, 8.0±0.87 and 9.4±1.01 respectively, intergroup differences (groups 1 and 2) were significant, p<0.05. By Visit 2, the proportion of patients with a negative PCR result increased in Group 1 by 25%, in Group 2 by 43% and in Group 3 by 38%, which corresponded to the elimination of 81, 92 and 74% of viruses detected in groups according to PCR-1 and PCR-2. The microbiota of participants in all groups before treatment differed from the microbiota of healthy in terms of alpha and beta diversity, as well as in terms of indicators obtained by the NearesBalance method. After completion of treatment, changes in the microbiota in terms of beta diversity were observed in all groups compared to the initial state. In contrast to groups 1 and 3, in Group 2 there were statistically significant changes in species-level balances between groups of microbes that distinguish between sick and healthy, towards indicators of healthy. Conclusion. Topical etiotropic medications provide rapid relief of complaints and local signs of inflammation in the treatment of patients aged 5–10 years with sore throat in acute respiratory infections and contribute to the rapid elimination of pathogens of acute respiratory infections. A combined preparation containing an antiseptic and a bacteriocin-like antimicrobial peptide gramicidin S provides a more pronounced therapeutic effect at an earlier time and the elimination of 90% of all respiratory viruses, including SARS-CoV-2, by the fifth day of therapy, and also has the most sparing effect on the oropharyngeal microbiota compared to antiseptic monopreparations, which may explain its more pronounced anti-inflammatory effect.
1. Krüger K, Töpfner N, Berner R, et al. Clinical Practice Guideline: Sore Throat. Dtsch Arztebl Int. 2021;118(11):188-94. DOI:10.3238/arztebl.m2021.0121
2. Радциг Е.Ю., Гуров А.В. Боль в горле. Перекрестье проблем и поиски решений. РМЖ. Мать и дитя. 2022;5(3):228-36 [Radtsig EYu, Gurov AV. Sore throat. Crossing problems and finding solutions. Russian Journal of Woman and Child Health. 2022;5(3):228-36 (in Russian)]. DOI:10.32364/2618-8430-2022-5-3-228-236
3. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022;399(10335):1618-24. DOI:10.1016/S0140-6736(22)00327-0
4. Möhler R, Jenetzky E, Schwarz S, et al. Children's Symptoms with a Febrile Illness and a Positive or Negative Test of SARS-CoV-2 during the Omicron Wave. Children (Basel). 2023;10(3):419. DOI:10.3390/children10030419
5. Wi D, Choi SH. Positive Rate of Tests for Group a Streptococcus and Viral Features in Children with Acute Pharyngitis. Children (Basel). 2021;8(7):599. DOI:10.3390/children8070599
6. Радциг Е.Ю., Евсикова М.М., Луговая Ю.В. Клинико-этиологические особенности течения острого воспаления глотки у детей разных возрастных групп. Педиатрия. Журнал им. Г.Н. Сперанского. 2021;100(1):130-5 [Radtsig EYu, Evsikova MM, Lugovaya YuV. Clinical and etiological features of the pharynx acute inflammation course in children of different age groups. Pediatriya. Zhurnal im. G.N. Speranskogo. 2021;100(1):130-5 (in Russian)]. DOI:10.24110/0031-403X-2021-100-1-130-135
7. Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol. 2018;9:2640. DOI:10.3389/fimmu.2018.02640
8. Козырев Е.А., Бабаченко И.В., Сидоренко С.В. Современные аспекты изучения респираторной микробиоты и ее роль в развитии инфекций нижних дыхательных путей. Инфекционные болезни. 2022;20(1):99‑106 [Kozyrev EA, Babachenko IV, Sidorenko SV. Current aspects of studying respiratory microbiota and its role in the development of lower respiratory tract infections. Infekc. bolezni (Infectious diseases). 2022;20(1):99-106 (in Russian)]. DOI:10.20953/1729-9225-2022-1-99-106
9. Lee KH, Gordon A, Shedden K, et al. The respiratory microbiome and susceptibility to influenza virus infection. PLoS One. 2019;14(1):e0207898. DOI:10.1371/journal.pone.0207898
10. Tsang TK, Lee KH, Foxman B, et al. Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clin Infect Dis. 2020;71(5):1195-203. DOI:10.1093/cid/ciz968
11. Ramos-Sevillano E, Wade WG, Mann A, et al. The Effect of Influenza Virus on the Human Oropharyngeal Microbiome. Clin Infect Dis. 2019;68(12):1993-2002. DOI:10.1093/cid/ciy821
12. Wen Z, Xie G, Zhou Q, et al. Distinct Nasopharyngeal and Oropharyngeal Microbiota of Children with Influenza A Virus Compared with Healthy Children. Biomed Res Int. 2018;2018:6362716. DOI:10.1155/2018/6362716
13. Hu Q, Dai W, Zhou Q, et al. Dynamic oropharyngeal and faecal microbiota during treatment in infants hospitalized for bronchiolitis compared with age-matched healthy subjects. Sci Rep. 2017;7(1):11266. DOI:10.1038/s41598-017-11311-z
14. DeMuri GP, Gern JE, Eickhoff JC, et al. Dynamics of Bacterial Colonization With Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis During Symptomatic and Asymptomatic Viral Upper Respiratory Tract Infection. Clin Infect Dis. 2018;66(7):1045-53. DOI:10.1093/cid/cix941
15. Rattanaburi S, Sawaswong V, Chitcharoen S, et al. Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients. Exp Biol Med (Maywood). 2022;247(5):409-15. DOI:10.1177/15353702211057473
16. Rueca M, Fontana A, Bartolini B, et al. Investigation of Nasal/Oropharyngeal Microbial Community of COVID-19 Patients by 16S rDNA Sequencing. Int J Environ Res Public Health. 2021;18(4):2174. DOI:10.3390/ijerph18042174
17. Xu Q, Wischmeyer J, Gonzalez E, Pichichero ME. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection. J Infect. 2017;75(1):26-34. DOI:10.1016/j.jinf.2017.04.003
18. Bjornsdottir B, Benitez Hernandez U, Haraldsson A, Thors V. Febrile Children with Pneumonia Have Higher Nasopharyngeal Bacterial Load Than Other Children with Fever. Pathogens. 2023;12(4):517. DOI:10.3390/pathogens12040517
19. Ansaldo E, Farley TK, Belkaid Y. Control of Immunity by the Microbiota. Annu Rev Immunol. 2021;39:449-79. DOI:10.1146/annurev-immunol-093019-112348
20. Hong BY, Sobue T, Choquette L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome. 2019;7(1):66.
DOI:10.1186/s40168-019-0679-5
21. Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80(3):928-34. DOI:10.1128/AEM.03133-13
22. Shu Y, Upara C, Ding Q, et al. Spent culture supernatant of Streptococcus gordonii mitigates inflammation of human periodontal cells and inhibits proliferation of pathogenic oral microbes. J Periodontol. 2023;94(4):575-85. DOI:10.1002/JPER.22-0333
23. do Amaral GCLS, Hassan MA, Sloniak MC, et al. Effects of antimicrobial mouthwashes on the human oral microbiome: Systematic review of controlled clinical trials. Int J Dent Hyg. 2023;21(1):128-40. DOI:10.1111/idh.12617
24. Gupta A, Bhanushali S, Sanap A, et al. Oral dysbiosis and its linkage with SARS-CoV-2 infection. Microbiol Res. 2022;261:127055. DOI:10.1016/j.micres.2022.127055
25. Алексеева Е.И., Анциферов М.Б., Аронов Л.С., и др. Порядок ведения детей с острыми респираторными инфекциями, в том числе COVID-19, находящихся на амбулаторном лечении в медицинских организациях государственной системы здравоохранения города Москвы. Под ред. А.И. Хрипуна. М.: ГБУ «НИИОЗММ ДЗМ», 2021 [Alexeeva EI, Antsiferov MB, Aronov LS, et al. Poriadok vedeniia detei s ostrymi respiratornymi infektsiiami, v tom chisle COVID-19, nakhodiashchikhsia na ambulatornom lechenii v meditsinskikh organizatsiiakh gosudarstvennoi sistemy zdravookhraneniia goroda Moskvy.Pod red. AI Khripuna. Moscow: GBU "NIIOZMM DZM", 2021 (in Russian)].
26. Союз педиатров России. Евро-Азиатское общество по инфекционным болезням. Клинические рекомендации. ID 25. Острая респираторная вирусная инфекция (ОРВИ). Возрастная группа: дети, 2022 [Soiuz pediatrov Rossii. Evro-Aziatskoe obshchestvo po infektsionnym bolezniam. Klinicheskie rekomendatsii. ID 25. Ostraia respiratornaia virusnaia infektsiia (ORVI). Vozrastnaia gruppa: deti, 2022 (in Russian)].
27. Efimova D, Tyakht A, Popenko A, et al. Knomics-Biota – a system for exploratory analysis of human gut microbiota data. BioData Min. 2018;11:25. DOI:10.1186/s13040-018-0187-3
28. De Coster W, D'Hert S, Schultz DT, et al. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666-9. DOI:10.1093/bioinformatics/bty149
29. Curry KD, Wang Q, Nute MG, et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat Methods. 2022;19(7):845-53. DOI:10.1038/s41592-022-01520-4
30. Kim BR, Shin J, Guevarra R, et al. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J Microbiol Biotechnol. 2017;27(12):2089-93. DOI:10.4014/jmb.1709.09027
31. Wagner BD, Grunwald GK, Zerbe GO, et al. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Front Microbiol. 2018;9:1037. DOI:10.3389/fmicb.2018.01037
32. Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V. Logratio Analysis and Compositional Distance. Math Geol. 2000;32:271-5. DOI:10.1023/A:1007529726302
33. Odintsova VE, Klimenko NS, Tyakht AV. Approximation of a Microbiome Composition Shift by a Change in a Single Balance Between Two Groups of Taxa. mSystems. 2022;7(3):e0015522. DOI:10.1128/msystems.00155-22
34. Ansaldo E, Farley TK, Belkaid Y. Control of Immunity by the Microbiota. Annu Rev Immunol. 2021;39:449-79. DOI:10.1146/annurev-immunol-093019-112348
35. Edouard S, Million M, Bachar D, et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis. 2018;37(9):1725-33. DOI:10.1007/s10096-018-3305-8
36. Tsang TK, Lee KH, Foxman B, et al. Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clin Infect Dis. 2020;71(5):1195-203. DOI:10.1093/cid/ciz968
37. Chonmaitree T, Jennings K, Golovko G, et al. Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS One. 2017;12(7):e0180630. DOI:10.1371/journal.pone.0180630
38. Rosas-Salazar C, Shilts MH, Tovchigrechko A, et al. Differences in the Nasopharyngeal Microbiome During Acute Respiratory Tract Infection With Human Rhinovirus and Respiratory Syncytial Virus in Infancy. J Infect Dis. 2016;214(12):1924-8. DOI:10.1093/infdis/jiw456
39. Shu Y, Upara C, Ding Q, et al. Spent culture supernatant of Streptococcus gordonii mitigates inflammation of human periodontal cells and inhibits proliferation of pathogenic oral microbes. J Periodontol. 2023;94(4):575-85. DOI:10.1002/JPER.22-0333
40. Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80(3):928-34. DOI:10.1128/AEM.03133-13
41. Zhang G, Rudney JD. Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-κB. Mol Oral Microbiol. 2011;26(2):150-63. DOI:10.1111/j.2041-1014.2010.00600.x
42. Miki Y, Taketomi Y, Kidoguchi Y, et al. Group IIA secreted phospholipase A2 controls skin carcinogenesis and psoriasis by shaping the gut microbiota. JCI Insight. 2022;7(2):e152611. DOI:10.1172/jci.insight.152611
43. Taketomi Y, Miki Y, Murakami M. Old but New: Group IIA Phospholipase A2 as a Modulator of Gut Microbiota. Metabolites. 2022;12(4):352. DOI:10.3390/metabo12040352
44. Crittenden S, Goepp M, Pollock J, et al. Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci Adv. 2021;7(7):eabd7954. DOI:10.1126/sciadv.abd7954
45. Kremleva EA, Bukharin OV. Effect of IL-1beta on growth properties of vaginal microsymbionts. Zh Mikrobiol Epidemiol Immunobiol. 2013;4:65-9.
46. Modéer T, Yucel-Lindberg T. Benzydamine reduces prostaglandin production in human gingival fibroblasts challenged with interleukin-1 beta or tumor necrosis factor alpha. Acta Odontol Scand. 1999;57(1):40-5. DOI:10.1080/000163599429093
47. Soto Ocaña J, Bayard NU, Zackular JP. Pain killers: the interplay between nonsteroidal anti-inflammatory drugs and Clostridioides difficile infection. Curr Opin Microbiol.
2022;65:167-74. DOI:10.1016/j.mib.2021.11.011
48. Rogers MAM, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect. 2016;22(2):178.e1-9. DOI:10.1016/j.cmi.2015.10.003
49. Мелехина Е.В., Музыка А.Д., Понежева Ж.Б., Горелов А.В. Цетилпиридиния хлорид в составе комбинированных препаратов для взрослых и детей в период пандемии COVID-19: подтвержденные возможности и перспективы. РМЖ. Медицинское обозрение. 2021;5(11):728-36 [Melekhina EV, Muzyka AD, Ponezheva ZhB, Gorelov AV. Cetylpyridinium chloride as a part of a combined medication for adults and children during the COVID-19 pandemic: established and perspective use. Russian Medical Inquiry. 2021;5(11):728-36 (in Russian)]. DOI:10.32364/2587-6821-2021-5-11-728-736
50. Mao X, Hiergeist A, Auer DL, et al. Ecological Effects of Daily Antiseptic Treatment on Microbial Composition of Saliva-Grown Microcosm Biofilms and Selection of Resistant Phenotypes. Front Microbiol. 2022;13:934525. DOI:10.3389/fmicb.2022.934525
51. Radford JR, Beighton D, Nugent Z, Jackson RJ. Effect of use of 0.05% cetylpyridinium chloride mouthwash on normal oral flora. J Dent. 1997;25(1):35‑40.
DOI:10.1016/s0300-5712(95)00116-6
52. Zayed N, Boon N, Bernaerts K, et al. Differences in chlorhexidine mouthrinses formulations influence the quantitative and qualitative changes in in-vitro oral biofilms. J Periodontal Res. 2022;57(1):52-62. DOI:10.1111/jre.12937
53. Гуров А.В., Боровкова К.Е., Крышень К.Л., и др. Оценка бактерицидной активности грамицидина С в отношении клинических изолятов Streptococcus pneumoniae и Staphylococcus aureus при однократном и многократном воздействии. Антибиотики и химиотерапия. 2022;67:7‑8:8‑18 [Gurov AV, Borovkova KE, Kryshen KL, et al. Evaluation of the bactericidal activity of gramicidin S against Streptococcus pneumoniae and Staphylococcus aureus clinical isolates with single and multiple (course) exposure. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2022;67:7-8:8-18 (in Russian)]. DOI:10.37489/0235-2990-2022-67-7-8-8-18
54. Wenzel M, Kohl B, Münch D, et al. Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. Antimicrob Agents Chemother. 2012;56(11):5749-57. DOI:10.1128/AAC.01380-12
55. Hancock RE. Cationic peptides: effectors in innate immunity andnovel antimicrobials. Lancet Infect Dis. 2001;1(3):156-64. DOI:10.1016/s14733099(01)00092-5.27
56. Захарова И.Н., Геппе Н.А., Сугян Н.Г., и др. Топические этиотропные препараты в терапии инфекционно-воспалительных заболеваний глотки у детей дошкольного возраста. Результаты многоцентрового рандомизированного клинического исследования. Российская оториноларингология. 2021;20(1):99-113 [Zakharova IN, Geppe NA, Sugyan NG, et al. Topical etiotropic drugs in therapy of infectious inflammatory diseases of pharynx in preschool children. Results of multicenter randomized comparative clinical trial. Rossiiskaya otorinolaringologiya. 2021;20(1):99-113 (in Russian)]. DOI:10.18692/1810-4800-2021-1-99-113
________________________________________________
1. Krüger K, Töpfner N, Berner R, et al. Clinical Practice Guideline: Sore Throat. Dtsch Arztebl Int. 2021;118(11):188-94. DOI:10.3238/arztebl.m2021.0121
2. Radtsig EYu, Gurov AV. Sore throat. Crossing problems and finding solutions. Russian Journal of Woman and Child Health. 2022;5(3):228-36 (in Russian).
DOI:10.32364/2618-8430-2022-5-3-228-236
3. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022;399(10335):1618-24. DOI:10.1016/S0140-6736(22)00327-0
4. Möhler R, Jenetzky E, Schwarz S, et al. Children's Symptoms with a Febrile Illness and a Positive or Negative Test of SARS-CoV-2 during the Omicron Wave. Children (Basel). 2023;10(3):419. DOI:10.3390/children10030419
5. Wi D, Choi SH. Positive Rate of Tests for Group a Streptococcus and Viral Features in Children with Acute Pharyngitis. Children (Basel). 2021;8(7):599. DOI:10.3390/children8070599
6. Radtsig EYu, Evsikova MM, Lugovaya YuV. Clinical and etiological features of the pharynx acute inflammation course in children of different age groups. Pediatriya. Zhurnal im. G.N. Speranskogo. 2021;100(1):130-5 (in Russian). DOI:10.24110/0031-403X-2021-100-1-130-135
7. Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol. 2018;9:2640. DOI:10.3389/fimmu.2018.02640
8. Kozyrev EA, Babachenko IV, Sidorenko SV. Current aspects of studying respiratory microbiota and its role in the development of lower respiratory tract infections. Infekc. bolezni (Infectious diseases). 2022;20(1):99-106 (in Russian). DOI:10.20953/1729-9225-2022-1-99-106
9. Lee KH, Gordon A, Shedden K, et al. The respiratory microbiome and susceptibility to influenza virus infection. PLoS One. 2019;14(1):e0207898. DOI:10.1371/journal.pone.0207898
10. Tsang TK, Lee KH, Foxman B, et al. Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clin Infect Dis. 2020;71(5):1195-203. DOI:10.1093/cid/ciz968
11. Ramos-Sevillano E, Wade WG, Mann A, et al. The Effect of Influenza Virus on the Human Oropharyngeal Microbiome. Clin Infect Dis. 2019;68(12):1993-2002. DOI:10.1093/cid/ciy821
12. Wen Z, Xie G, Zhou Q, et al. Distinct Nasopharyngeal and Oropharyngeal Microbiota of Children with Influenza A Virus Compared with Healthy Children. Biomed Res Int. 2018;2018:6362716. DOI:10.1155/2018/6362716
13. Hu Q, Dai W, Zhou Q, et al. Dynamic oropharyngeal and faecal microbiota during treatment in infants hospitalized for bronchiolitis compared with age-matched healthy subjects. Sci Rep. 2017;7(1):11266. DOI:10.1038/s41598-017-11311-z
14. DeMuri GP, Gern JE, Eickhoff JC, et al. Dynamics of Bacterial Colonization With Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis During Symptomatic and Asymptomatic Viral Upper Respiratory Tract Infection. Clin Infect Dis. 2018;66(7):1045-53. DOI:10.1093/cid/cix941
15. Rattanaburi S, Sawaswong V, Chitcharoen S, et al. Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients. Exp Biol Med (Maywood). 2022;247(5):409-15. DOI:10.1177/15353702211057473
16. Rueca M, Fontana A, Bartolini B, et al. Investigation of Nasal/Oropharyngeal Microbial Community of COVID-19 Patients by 16S rDNA Sequencing. Int J Environ Res Public Health. 2021;18(4):2174. DOI:10.3390/ijerph18042174
17. Xu Q, Wischmeyer J, Gonzalez E, Pichichero ME. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection. J Infect. 2017;75(1):26-34. DOI:10.1016/j.jinf.2017.04.003
18. Bjornsdottir B, Benitez Hernandez U, Haraldsson A, Thors V. Febrile Children with Pneumonia Have Higher Nasopharyngeal Bacterial Load Than Other Children with Fever. Pathogens. 2023;12(4):517. DOI:10.3390/pathogens12040517
19. Ansaldo E, Farley TK, Belkaid Y. Control of Immunity by the Microbiota. Annu Rev Immunol. 2021;39:449-79. DOI:10.1146/annurev-immunol-093019-112348
20. Hong BY, Sobue T, Choquette L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome. 2019;7(1):66.
DOI:10.1186/s40168-019-0679-5
21. Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80(3):928-34. DOI:10.1128/AEM.03133-13
22. Shu Y, Upara C, Ding Q, et al. Spent culture supernatant of Streptococcus gordonii mitigates inflammation of human periodontal cells and inhibits proliferation of pathogenic oral microbes. J Periodontol. 2023;94(4):575-85. DOI:10.1002/JPER.22-0333
23. do Amaral GCLS, Hassan MA, Sloniak MC, et al. Effects of antimicrobial mouthwashes on the human oral microbiome: Systematic review of controlled clinical trials. Int J Dent Hyg. 2023;21(1):128-40. DOI:10.1111/idh.12617
24. Gupta A, Bhanushali S, Sanap A, et al. Oral dysbiosis and its linkage with SARS-CoV-2 infection. Microbiol Res. 2022;261:127055. DOI:10.1016/j.micres.2022.127055
25. Alexeeva EI, Antsiferov MB, Aronov LS, et al. Poriadok vedeniia detei s ostrymi respiratornymi infektsiiami, v tom chisle COVID-19, nakhodiashchikhsia na ambulatornom lechenii v meditsinskikh organizatsiiakh gosudarstvennoi sistemy zdravookhraneniia goroda Moskvy.Pod red. AI Khripuna. Moscow: GBU "NIIOZMM DZM", 2021 (in Russian).
26. Soiuz pediatrov Rossii. Evro-Aziatskoe obshchestvo po infektsionnym bolezniam. Klinicheskie rekomendatsii. ID 25. Ostraia respiratornaia virusnaia infektsiia (ORVI). Vozrastnaia gruppa: deti, 2022 (in Russian).
27. Efimova D, Tyakht A, Popenko A, et al. Knomics-Biota – a system for exploratory analysis of human gut microbiota data. BioData Min. 2018;11:25. DOI:10.1186/s13040-018-0187-3
28. De Coster W, D'Hert S, Schultz DT, et al. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666-9. DOI:10.1093/bioinformatics/bty149
29. Curry KD, Wang Q, Nute MG, et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat Methods. 2022;19(7):845-53. DOI:10.1038/s41592-022-01520-4
30. Kim BR, Shin J, Guevarra R, et al. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J Microbiol Biotechnol. 2017;27(12):2089-93. DOI:10.4014/jmb.1709.09027
31. Wagner BD, Grunwald GK, Zerbe GO, et al. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Front Microbiol. 2018;9:1037. DOI:10.3389/fmicb.2018.01037
32. Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V. Logratio Analysis and Compositional Distance. Math Geol. 2000;32:271-5. DOI:10.1023/A:1007529726302
33. Odintsova VE, Klimenko NS, Tyakht AV. Approximation of a Microbiome Composition Shift by a Change in a Single Balance Between Two Groups of Taxa. mSystems. 2022;7(3):e0015522. DOI:10.1128/msystems.00155-22
34. Ansaldo E, Farley TK, Belkaid Y. Control of Immunity by the Microbiota. Annu Rev Immunol. 2021;39:449-79. DOI:10.1146/annurev-immunol-093019-112348
35. Edouard S, Million M, Bachar D, et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis. 2018;37(9):1725-33. DOI:10.1007/s10096-018-3305-8
36. Tsang TK, Lee KH, Foxman B, et al. Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clin Infect Dis. 2020;71(5):1195-203. DOI:10.1093/cid/ciz968
37. Chonmaitree T, Jennings K, Golovko G, et al. Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS One. 2017;12(7):e0180630. DOI:10.1371/journal.pone.0180630
38. Rosas-Salazar C, Shilts MH, Tovchigrechko A, et al. Differences in the Nasopharyngeal Microbiome During Acute Respiratory Tract Infection With Human Rhinovirus and Respiratory Syncytial Virus in Infancy. J Infect Dis. 2016;214(12):1924-8. DOI:10.1093/infdis/jiw456
39. Shu Y, Upara C, Ding Q, et al. Spent culture supernatant of Streptococcus gordonii mitigates inflammation of human periodontal cells and inhibits proliferation of pathogenic oral microbes. J Periodontol. 2023;94(4):575-85. DOI:10.1002/JPER.22-0333
40. Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80(3):928-34. DOI:10.1128/AEM.03133-13
41. Zhang G, Rudney JD. Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-κB. Mol Oral Microbiol. 2011;26(2):150-63. DOI:10.1111/j.2041-1014.2010.00600.x
42. Miki Y, Taketomi Y, Kidoguchi Y, et al. Group IIA secreted phospholipase A2 controls skin carcinogenesis and psoriasis by shaping the gut microbiota. JCI Insight. 2022;7(2):e152611. DOI:10.1172/jci.insight.152611
43. Taketomi Y, Miki Y, Murakami M. Old but New: Group IIA Phospholipase A2 as a Modulator of Gut Microbiota. Metabolites. 2022;12(4):352. DOI:10.3390/metabo12040352
44. Crittenden S, Goepp M, Pollock J, et al. Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci Adv. 2021;7(7):eabd7954. DOI:10.1126/sciadv.abd7954
45. Kremleva EA, Bukharin OV. Effect of IL-1beta on growth properties of vaginal microsymbionts. Zh Mikrobiol Epidemiol Immunobiol. 2013;4:65-9.
46. Modéer T, Yucel-Lindberg T. Benzydamine reduces prostaglandin production in human gingival fibroblasts challenged with interleukin-1 beta or tumor necrosis factor alpha. Acta Odontol Scand. 1999;57(1):40-5. DOI:10.1080/000163599429093
47. Soto Ocaña J, Bayard NU, Zackular JP. Pain killers: the interplay between nonsteroidal anti-inflammatory drugs and Clostridioides difficile infection. Curr Opin Microbiol.
2022;65:167-74. DOI:10.1016/j.mib.2021.11.011
48. Rogers MAM, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect. 2016;22(2):178.e1-9. DOI:10.1016/j.cmi.2015.10.003
49. Melekhina EV, Muzyka AD, Ponezheva ZhB, Gorelov AV. Cetylpyridinium chloride as a part of a combined medication for adults and children during the COVID-19 pandemic: established and perspective use. Russian Medical Inquiry. 2021;5(11):728-36 (in Russian). DOI:10.32364/2587-6821-2021-5-11-728-736
50. Mao X, Hiergeist A, Auer DL, et al. Ecological Effects of Daily Antiseptic Treatment on Microbial Composition of Saliva-Grown Microcosm Biofilms and Selection of Resistant Phenotypes. Front Microbiol. 2022;13:934525. DOI:10.3389/fmicb.2022.934525
51. Radford JR, Beighton D, Nugent Z, Jackson RJ. Effect of use of 0.05% cetylpyridinium chloride mouthwash on normal oral flora. J Dent. 1997;25(1):35‑40.
DOI:10.1016/s0300-5712(95)00116-6
52. Zayed N, Boon N, Bernaerts K, et al. Differences in chlorhexidine mouthrinses formulations influence the quantitative and qualitative changes in in-vitro oral biofilms. J Periodontal Res. 2022;57(1):52-62. DOI:10.1111/jre.12937
53. Gurov AV, Borovkova KE, Kryshen KL, et al. Evaluation of the bactericidal activity of gramicidin S against Streptococcus pneumoniae and Staphylococcus aureus clinical isolates with single and multiple (course) exposure. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2022;67:7-8:8-18 (in Russian). DOI:10.37489/0235-2990-2022-67-7-8-8-18
54. Wenzel M, Kohl B, Münch D, et al. Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. Antimicrob Agents Chemother. 2012;56(11):5749-57. DOI:10.1128/AAC.01380-12
55. Hancock RE. Cationic peptides: effectors in innate immunity andnovel antimicrobials. Lancet Infect Dis. 2001;1(3):156-64. DOI:10.1016/s14733099(01)00092-5.27
56. Zakharova IN, Geppe NA, Sugyan NG, et al. Topical etiotropic drugs in therapy of infectious inflammatory diseases of pharynx in preschool children. Results of multicenter randomized comparative clinical trial. Rossiiskaya otorinolaringologiya. 2021;20(1):99-113 (in Russian). DOI:10.18692/1810-4800-2021-1-99-113
1ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия; 2ГБУЗ «Детская городская поликлиника №140» Департамента здравоохранения г. Москвы, Москва, Россия; 3ООО «Кномикс» (Atlas Biomed Group), Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Irina N. Zakharova*1, Irina S. Kuznetsova1, Tatiana A. Cherednikova2, Anastasia V. Makhaeva1,2, Stanislav I. Koshechkin3, Vladimir A. Romanov3, Vera E. Odintsova3
1Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 2Children's City Polyclinic №140, Moscow, Russia; 3Knomics LLC, Moscow, Russia
*zakharova-rmapo@yandex.ru