Koshechkin SI, Odintsova VE, Karasev AV, Zakharova IN, Berezhnaya IV, Kuchina AE, Yudina AE, Kuznetsova IS, Dmitrieva DK, Orobinskaya YaV, Serikova LS, Makhaeva AV, Romanov VA. Clinical studies of the human microbiome. Strategies for applying methods and translating results into clinical practice: A review. Pediatrics. Consilium Medicum. 2024;1:15–24. DOI: 10.26442/26586630.2024.1.202774
Клинические исследования микробиома человека. Стратегии применения методов и трансляция результатов в клиническую практику
Кошечкин С.И., Одинцова В.Е., Карасев А.В., Захарова И.Н., Бережная И.В., Кучина А.Е., Юдина А.Е., Кузнецова И.С., Дмитриева Д.К., Оробинская Я.В., Серикова Л.С., Махаева А.В., Романов В.А., Клинические исследования микробиома человека. Стратегии применения методов и трансляция результатов в клиническую практику. Педиатрия. Consilium Medicum. 2024;1:15–24.
DOI: 10.26442/26586630.2024.1.202774
Koshechkin SI, Odintsova VE, Karasev AV, Zakharova IN, Berezhnaya IV, Kuchina AE, Yudina AE, Kuznetsova IS, Dmitrieva DK, Orobinskaya YaV, Serikova LS, Makhaeva AV, Romanov VA. Clinical studies of the human microbiome. Strategies for applying methods and translating results into clinical practice: A review. Pediatrics. Consilium Medicum. 2024;1:15–24. DOI: 10.26442/26586630.2024.1.202774
Анализируются актуальные омиксные методы, которые имеют важное значение для научных исследований. Их применение позволяет изучить механизмы клинических проявлений путем анализа связей между характеристикой микробиоты и клиническими параметрами. Для представления сложных взаимодействий между микробиомом и метаболизмом хозяина наиболее релевантными являются методы метагеномики и метаболомики, которые способствуют поиску новых терапевтических подходов. На основании метагеномных данных осуществляется поиск ассоциированных таксонов, а метаболомный профиль указывает на результат жизнедеятельности микробного сообщества. Рассматриваются характеристики технологий для изучения метагеномов методом ампликонного секвенирования, оцениваются глубина идентификации микроорганизмов, уровень ошибок секвенирования и предпочтительность с точки зрения стоимости. Изучение эволюции патогенов и метаболических процессов, экспрессирующихся генов, а также детерминант антибиотикоустойчивости способствует разработке рациональных стратегий терапии заболеваний и контролю за распространением инфекционных заболеваний. В последние годы неуклонно растет количество научных проектов в области изучения микробиоты, что диктует необходимость повышения информированности врачей о современных методах и исследовательских подходах для применения актуальных данных в практической работе.
Ключевые слова: омиксные технологии, метагеномика, секвенирование гена 16S рРНК, микробиота, биоинформатический анализ, альфа- и бета-разнообразие, метод баланса
________________________________________________
Current omics methods, which are essential for scientific research, are overviewed. These methods enable studies of the mechanisms of clinical manifestations by analyzing the relationship between the microbiota characteristics and clinical parameters. To represent the complex interactions between the microbiome and host metabolism, metagenomics and metabolomics techniques that contribute to the search for new therapeutic approaches are most relevant. Based on the metagenomic data, the associated taxa are searched, and the metabolic profile indicates the result of the activity of the microbial community. The characteristics of technologies for studying metagenomes using the amplicon sequencing method are considered, and the depth of identification of microorganisms, the level of sequencing errors and the preference in terms of cost are evaluated. Studying the evolution of pathogens and metabolic processes, expressed genes, and determinants of antibiotic resistance contributes to the development of rational strategies for disease therapy and control of the spread of infectious diseases. In recent years, the number of scientific projects in the field of microbiota research has been steadily increasing, which necessitates the need to raise physicians' awareness of modern methods and research approaches in order to apply relevant data in practical work.
1. Overmann J, Abt B, Sikorski J. Present and Future of Culturing Bacteria. Annu Rev Microbiol. 2017;71:711-30. DOI:10.1146/annurev-micro-090816-093449
2. Proctor LM. The National Institutes of Health Human Microbiome Project. Semin Fetal Neonatal Med. 2016;21(6):368-72. DOI:10.1016/j.siny.2016.05.002
3. Chen C, Wang J, Pan D, et al. Applications of multi-omics analysis in human diseases. MedComm (2020). 2023;4(4):e315. DOI:10.1002/mco2.315
4. Postler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110-30. DOI:10.1016/j.cmet.2017.05.008
5. Aw W, Fukuda S. An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Diseases. 2015;3(4):341-59. DOI:10.3390/diseases3040341
6. Marco D. Metagenomics: Theory, Methods and Applications [Internet]. 2010. Available at: https://books.google.com/books/about/Metagenomics.html?hl=&id=8kl8zQEACAAJ. Accessed: 14.02.2023.
7. Muzzey D, Evans EA, Lieber C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr Genet Med Rep. 2015;3(4):158-65. DOI:10.1007/s40142-015-0076-8
8. Morganti S, Tarantino P, Ferraro E, et al. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv Exp Med Biol. 2019;1168:9-30. DOI:10.1007/978-3-030-24100-1_2
9. Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes (Basel). 2010;1(1):38-69. DOI:10.3390/genes1010038
10. Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107(1):1-8. DOI:10.1016/j.ygeno.2015.11.003
11. Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348-65. DOI:10.1038/s41587-021-01108-x
12. Meslier V, Quinquis B, Da Silva K, et al. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci Data. 2022;9(1):694.
DOI:10.1038/s41597-022-01762-z
13. Usyk M, Peters BA, Karthikeyan S, et al. Comprehensive evaluation of shotgun meta-
genomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. Cell Rep Methods. 2023;3(1):100391. DOI:10.1016/j.crmeth.2022.100391
14. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the Information Content of Shallow Shotgun Metagenomics. mSystems. 2018;3(6). DOI:10.1128/mSystems.00069-18
15. de Muinck EJ, Trosvik P, Gilfillan GD, et al. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome. 2017;5(1):68. DOI:10.1186/s40168-017-0279-1
16. Gao B, Chi L, Zhu Y, et al. An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules. 2021;11(4). DOI:10.3390/biom11040530
17. Pugh J. The Current State of Nanopore Sequencing. Methods Mol Biol. 2023;2632:3-14. DOI:10.1007/978-1-0716-2996-3_1
18. LeMay-Nedjelski L, Copeland J, Wang PW, et al. Methods and Strategies to Examine the Human Breastmilk Microbiome. Methods Mol Biol. 2018;1849:63-86.
DOI:10.1007/978-1-4939-8728-3_5
19. Liu YX, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 2021;12(5):315-30. DOI:10.1007/s13238-020-00724-8
20. Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782-858. DOI:10.1099/ijsem.0.004107
21. Cao Q, Sun X, Rajesh K, et al. Effects of Rare Microbiome Taxa Filtering on Statistical Analysis. Front Microbiol. 2020;11:607325. DOI:10.3389/fmicb.2020.607325
22. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological). 1982;44(2):139-77.
23. Pearson K. Mathematical contributions to the theory of evolution – on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London (1854–1905). 1896;60(1):489-98. DOI:10.1098/rspl.1896.0076. 10.1098/rspl.1896.0076
24. Calle ML. Statistical Analysis of Metagenomics Data. Genomics Inform. 2019;17(1):e6. DOI:10.5808/GI.2019.17.1.e6
25. Egozcue JJ, Pawlowsky-Glahn V. Groups of parts and their balances in compositional data analysis. Mathematical Geology. 2005;37:795-828. DOI:10.1007/s11004-005-7381-9
26. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32-46. DOI:10.1111/j.1442-9993.2001.01070.pp.x
27. Shapiro H, Suez J, Elinav E. Personalized microbiome-based approaches to metabolic syndrome management and prevention. J Diabetes. 2017;9(3):226-36.
DOI:10.1111/1753-0407.12501
28. Zhang F, Luo W, Shi Y, et al. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107(11):1755; author reply p.1755-6. DOI:10.1038/ajg.2012.251
29. Collins DC. Pseudomembranous enterocolitis. Further observations on the value of donor fecal enemata as an adjunct in the treatment of pseudomembranous enterocolitis. Am J Proctol. 1960;2:389-91.
30. Rao K, Safdar N. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med. 2016;11(1):56-61. DOI:10.1002/jhm.2449
31. Marotz CA, Zarrinpar A. Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation. Yale J Biol Med. 2016;89(3):383-8.
32. Massimino L, Lamparelli LA, Houshyar Y, et al. The Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) framework. Nat Comput Sci. 2021;1(8):511-5. DOI:10.1038/s43588-021-00114-y
33. Massimino L, Barchi A, Mandarino FV, et al. A multi-omic analysis reveals the esophageal dysbiosis as the predominant trait of eosinophilic esophagitis. J Transl Med. 2023;21(1):46. DOI:10.1186/s12967-023-03898-x
34. Thomas AM, Fidelle M, Routy B, et al. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol. 2023;20(9):583-603. DOI:10.1038/s41571-023-00785-8
35. World Gastroenterology Organisation practice guideline: Probiotics and prebiotics. Arab J Gastroenterol. 2009;10(1):33-42. DOI:10.1016/j.ajg.2009.03.001
36. National Research Council (US) Committee on Metagenomics: Challenges and Functional Applications. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. Washington (DC): National Academies Press (US), 2007. DOI:10.17226/11902
37. NIH HMP Working Group; Peterson J, Garges, S, Giovanni M et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317-23. DOI:10.1101/gr.096651.109
38. MetaHIT. Available at: https://www.gutmicrobiotaforhealth.com/metahit. Accessed: 15.02.2023.
39. Shi W, Qi H, Sun Q, et al. gcMeta: a Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 2019;47(D1):D637-48. DOI:10.1093/nar/gky1008
40. Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods. 2023;12(11). DOI:10.3390/foods12112140
________________________________________________
1. Overmann J, Abt B, Sikorski J. Present and Future of Culturing Bacteria. Annu Rev Microbiol. 2017;71:711-30. DOI:10.1146/annurev-micro-090816-093449
2. Proctor LM. The National Institutes of Health Human Microbiome Project. Semin Fetal Neonatal Med. 2016;21(6):368-72. DOI:10.1016/j.siny.2016.05.002
3. Chen C, Wang J, Pan D, et al. Applications of multi-omics analysis in human diseases. MedComm (2020). 2023;4(4):e315. DOI:10.1002/mco2.315
4. Postler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110-30. DOI:10.1016/j.cmet.2017.05.008
5. Aw W, Fukuda S. An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Diseases. 2015;3(4):341-59. DOI:10.3390/diseases3040341
6. Marco D. Metagenomics: Theory, Methods and Applications [Internet]. 2010. Available at: https://books.google.com/books/about/Metagenomics.html?hl=&id=8kl8zQEACAAJ. Accessed: 14.02.2023.
7. Muzzey D, Evans EA, Lieber C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr Genet Med Rep. 2015;3(4):158-65. DOI:10.1007/s40142-015-0076-8
8. Morganti S, Tarantino P, Ferraro E, et al. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv Exp Med Biol. 2019;1168:9-30. DOI:10.1007/978-3-030-24100-1_2
9. Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes (Basel). 2010;1(1):38-69. DOI:10.3390/genes1010038
10. Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107(1):1-8. DOI:10.1016/j.ygeno.2015.11.003
11. Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348-65. DOI:10.1038/s41587-021-01108-x
12. Meslier V, Quinquis B, Da Silva K, et al. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci Data. 2022;9(1):694.
DOI:10.1038/s41597-022-01762-z
13. Usyk M, Peters BA, Karthikeyan S, et al. Comprehensive evaluation of shotgun meta-
genomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. Cell Rep Methods. 2023;3(1):100391. DOI:10.1016/j.crmeth.2022.100391
14. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the Information Content of Shallow Shotgun Metagenomics. mSystems. 2018;3(6). DOI:10.1128/mSystems.00069-18
15. de Muinck EJ, Trosvik P, Gilfillan GD, et al. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome. 2017;5(1):68. DOI:10.1186/s40168-017-0279-1
16. Gao B, Chi L, Zhu Y, et al. An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules. 2021;11(4). DOI:10.3390/biom11040530
17. Pugh J. The Current State of Nanopore Sequencing. Methods Mol Biol. 2023;2632:3-14. DOI:10.1007/978-1-0716-2996-3_1
18. LeMay-Nedjelski L, Copeland J, Wang PW, et al. Methods and Strategies to Examine the Human Breastmilk Microbiome. Methods Mol Biol. 2018;1849:63-86.
DOI:10.1007/978-1-4939-8728-3_5
19. Liu YX, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 2021;12(5):315-30. DOI:10.1007/s13238-020-00724-8
20. Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782-858. DOI:10.1099/ijsem.0.004107
21. Cao Q, Sun X, Rajesh K, et al. Effects of Rare Microbiome Taxa Filtering on Statistical Analysis. Front Microbiol. 2020;11:607325. DOI:10.3389/fmicb.2020.607325
22. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological). 1982;44(2):139-77.
23. Pearson K. Mathematical contributions to the theory of evolution – on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London (1854–1905). 1896;60(1):489-98. DOI:10.1098/rspl.1896.0076. 10.1098/rspl.1896.0076
24. Calle ML. Statistical Analysis of Metagenomics Data. Genomics Inform. 2019;17(1):e6. DOI:10.5808/GI.2019.17.1.e6
25. Egozcue JJ, Pawlowsky-Glahn V. Groups of parts and their balances in compositional data analysis. Mathematical Geology. 2005;37:795-828. DOI:10.1007/s11004-005-7381-9
26. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32-46. DOI:10.1111/j.1442-9993.2001.01070.pp.x
27. Shapiro H, Suez J, Elinav E. Personalized microbiome-based approaches to metabolic syndrome management and prevention. J Diabetes. 2017;9(3):226-36.
DOI:10.1111/1753-0407.12501
28. Zhang F, Luo W, Shi Y, et al. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107(11):1755; author reply p.1755-6. DOI:10.1038/ajg.2012.251
29. Collins DC. Pseudomembranous enterocolitis. Further observations on the value of donor fecal enemata as an adjunct in the treatment of pseudomembranous enterocolitis. Am J Proctol. 1960;2:389-91.
30. Rao K, Safdar N. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med. 2016;11(1):56-61. DOI:10.1002/jhm.2449
31. Marotz CA, Zarrinpar A. Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation. Yale J Biol Med. 2016;89(3):383-8.
32. Massimino L, Lamparelli LA, Houshyar Y, et al. The Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) framework. Nat Comput Sci. 2021;1(8):511-5. DOI:10.1038/s43588-021-00114-y
33. Massimino L, Barchi A, Mandarino FV, et al. A multi-omic analysis reveals the esophageal dysbiosis as the predominant trait of eosinophilic esophagitis. J Transl Med. 2023;21(1):46. DOI:10.1186/s12967-023-03898-x
34. Thomas AM, Fidelle M, Routy B, et al. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol. 2023;20(9):583-603. DOI:10.1038/s41571-023-00785-8
35. World Gastroenterology Organisation practice guideline: Probiotics and prebiotics. Arab J Gastroenterol. 2009;10(1):33-42. DOI:10.1016/j.ajg.2009.03.001
36. National Research Council (US) Committee on Metagenomics: Challenges and Functional Applications. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. Washington (DC): National Academies Press (US), 2007. DOI:10.17226/11902
37. NIH HMP Working Group; Peterson J, Garges, S, Giovanni M et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317-23. DOI:10.1101/gr.096651.109
38. MetaHIT. Available at: https://www.gutmicrobiotaforhealth.com/metahit. Accessed: 15.02.2023.
39. Shi W, Qi H, Sun Q, et al. gcMeta: a Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 2019;47(D1):D637-48. DOI:10.1093/nar/gky1008
40. Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods. 2023;12(11). DOI:10.3390/foods12112140
1ООО «Нобиас Технолоджис», Москва, Россия; 2ООО Лаборатория «АБТ», Москва, Россия; 3ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия; 4ГБУЗ «Городская клиническая больница №29 им. Н.Э. Баумана» Департамента здравоохранения г. Москвы, Москва, Россия; 5ФГБУ «Национальный медицинский исследовательский центр высоких медицинских технологий – Центральный военный клинический госпиталь им. А.А. Вишневского» Минобороны России, Москва, Россия; 6ГБУЗ «Детская городская поликлиника №140» Департамента здравоохранения г. Москвы, Москва, Россия
*St.Koshechkin@gmail.com
________________________________________________
Stanislav I. Koshechkin*1, Vera E. Odintsova1, Alexander V. Karasev2, Irina N. Zakharova3, Irina V. Berezhnaya3, Anastasiya E. Kuchina3, Anastasiya E. Yudina4, Irina S. Kuznetsova3, Diana K. Dmitrieva3, Yana V. Orobinskaya3, Liudmila S. Serikova5, Anastasia V. Makhaeva3,6, Vladimir A. Romanov1
1Nobias Technologies LLC, Moscow, Russia; 2Laboratory "ABT", Moscow, Russia; 3Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 4Bauman City Clinical Hospital №29, Moscow, Russia; 5National Medical Research Center for High Medical Technologies – Vishnevsky Central Military Clinical Hospital, Moscow, Russia; 6Children's City Polyclinic №140, Moscow, Russia
*St.Koshechkin@gmail.com